Skip to main content
Log in

Identification of Materials in Fragments of Large-Sized Objects in Containers by the Dual-Energy Method

  • RADIATION METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract—

The mathematical and simulation models of image formation in a system for the recognition of materials of internal fragments of containers by the dual-energy method are developed. A series of computational experiments were carried out on the recognition of materials inside shipping containers without and with compensation for the influence of the factor being analyzed on the quality of identification. The thickness of the prefilter, the ADC digit capacity, the ratio of the numbers of low- and high-energy bremsstrahlung pulses, and the dimensions of the averaging filter window were varied. An algorithm has been developed to compensate for the influence of the container wall thickness on the identification quality. The algorithm is based on the statistical processing of radiographic images of the object. Its effectiveness has been experimentally proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ogorodnikov, S. and Petrunin, V., Processing of interlaced images in 4–10 MeV dual energy customs system for material recognition, Phys. Rev. Spec. Top. Accel. Beams, 2002, vol. 5, no. 10, article no. 104701.

    Article  Google Scholar 

  2. Wang, X.W., Li, J.M., Kang, K.J, Tang, C.X., Zhang, L., Chen, Z., Li, Y.J., Z.H., Material discrimination by high-energy X-ray dual-energy imaging, High Energy Phys. Nucl. Phys., 2007, vol. 31, no. 11, pp. 1076–1081.

    CAS  Google Scholar 

  3. Osipov, S.P., Chakhlov, S.V., Osipov, O.S., Shtein, A.M., and Strugovtsev, D.V., About accuracy of the discrimination parameter estimation for the dual high-energy method, IOP Conf. Ser: Mater. Sci. Eng., IOP Publ., 2015, vol. 81, no. 1, article no. 012082.

    Article  Google Scholar 

  4. Oh, K., Kim, J., Kim, S., Chae, M., Lee, D., Cha, H., and Lee, B., Evaluation and optimization of an image acquisition system for dual-energy cargo inspections, IEEE Trans. Nucl. Sci., 2018, vol. 65, no. 9, pp. 2657–2661.

    Article  CAS  Google Scholar 

  5. Shikhaliev, P.M., Megavoltage cargo radiography with dual energy material decomposition, Nucl. Instrum. Methods Phys. Res.,Sect. A, 2018, vol. 882, pp. 158–168.

    CAS  Google Scholar 

  6. Chen, G., Bennett, G., and Perticone, D., X-ray radiography for automatic high-Z material detection, Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, vol. 261, nos. 1–2, pp. 356–359.

  7. Fu, K., Ranta, D., Guest, C., and Das, P., The application of wavelet denoising in material discrimination system, Image Process.: Machine Vision Appl. III, Int. Soc. Opt. Photonics, 2010, vol. 7538, article no. 75380Z.

  8. Li, L., Zhao, T., and Chen, Z., First dual MeV energy X-ray CT for container inspection: design, algorithm, and preliminary experimental results, IEEE Access., 2018, vol. 6, pp. 45534–45542.

    Article  Google Scholar 

  9. Liu, Y., Sowerby, B.D., and Tickner, J.R., Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection, Appl. Radiat. Isot., 2008, vol. 66, no. 4, pp. 463—473.

    Article  CAS  Google Scholar 

  10. Novikov, V.L., Ogorodnikov, S.A., and Petrunin, V.I., Dual energy method of material recognition in high energy introscopy systems, Vopr. At. Nauki Tekh., 1999, vol. 4, no. 2, pp. 93–95.

    Google Scholar 

  11. Zhang, G., Zhang, L., and Chen, Z., An HL curve method for material discrimination of dual energy X-ray inspection systems, IEEE Nucl. Sci. Symp. Conf. Rec.2005, IEEE, 2005, vol. 1, pp. 326–328.

  12. Chen, Z.Q., Zhao, T., and Li, L., A curve-based material recognition method in MeV dual-energy X-ray imaging system, Nucl. Sci. Tech., 2016, vol. 27, no. 1, pp. 1–8.

    Article  Google Scholar 

  13. Osipov, S.P., Temnik, A.K., and Chakhlov, S.V., The effects of physical factors on the quality of the dual high-energy identification of the material of an inspected object, Russ. J. Nondestr. Test., 2014, vol. 50, no. 8, pp. 491–498.

    Article  Google Scholar 

  14. Rogers, T.W., Jaccard, N., Morton, E.J., and Griffin, L.D., Automated X-ray image analysis for cargo security: critical review and future promise, J. X-Ray Sci. Technol., 2017, vol. 25, no. 1, pp. 33–56.

    Article  Google Scholar 

  15. Kovalenko, N.O., Naydenov, S.V., Pritula, I.M., and Galkin, S.N., II sulfides and II selenides: growth, properties, and modern applications, in Single Crystals of Electronic Materials, Woodhead Publ., 2019, pp. 303–330.

    Google Scholar 

  16. Osipov, S.P., Chakhlov, S.V., Osipov, O.S., Li, S., Sun, X., Zheng, J., Hu, X., and Zhang, G., Physical and technical restrictions of materials recognition by the dual high energy X-ray imaging, Int. J. Appl. Eng. Res., 2017, vol. 12, no. 23, pp. 13127–13136.

    Google Scholar 

  17. Andrews, J.T.A., Jaccard, N., Rogers, T.W., and Griffin, L.D., Representation-learning for anomaly detection in complex x-ray cargo imagery, Anomaly Detect. Imaging X-Rays (ADIX) II, Int. Soc. Opt. Photonics, 2017, vol. 10187, article no. 101870E.

  18. Pashby, J., Glenn, S., Divin, C., and Martz, H., Radiation Detection and Dual-Energy X-Ray Imaging for Port Security, Livermore, CA: Lawrence Livermore Natl. Lab. (LLNL), 2017, no. LLNLTR-736549.

  19. Kolokytha, S., Flisch, A., Lüthi, T., Plamondon, M., Visser, W., Schwaninger, A., Hardmeier, D., Costin, M., Vienne, C., Sukowski, F., Hassler, U., Dorion, I., Gadi, N., Maitrejean, S., Marciano, A., Canonica, A., Rochat, E., Koomen, G., and Slegt, M., Creating a reference database of cargo inspection X-ray images using high energy radiographs of cargo mock-ups, Multimedia Tools Appl., 2018, vol. 77, no. 8, pp. 9379–9391.

    Article  Google Scholar 

  20. Storm, L. and Israel, H.I., Photon cross sections from 1 keV to 100 MeV for elements \(Z = 1\) to \(Z = 100\), At. Data Nucl. Data Tables, 1970, vol. 7, no. 6, pp. 565–681.

    Article  CAS  Google Scholar 

  21. Berger, M.J. and Hubbell, J.H., XCOM: Photon Cross Sections on a Personal Computer, Washington, DC: Natl. Bur. Stand., Center Radiat. Res., 1987, no. NBSIR-87-3597.

  22. X-ray mass attenuation coefficients. NIST standard reference database 126. URL: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients

  23. Udod, V.A., Osipov, S.P., and Wang, Y., The mathematical model of image, generated by scanning digital radiography system, IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ., 2017, vol. 168, no. 1, article no. 012042.

    Article  Google Scholar 

  24. Aliev, F.K., Alimov, G.R., Muminov, A.T., Osmanov, B.S., and Skvortsov, V.V., Simulation of experiment on total external reflection of electron bremsstrahlung, Tech. Phys., 2005, vol. 50, no. 8, pp. 1053–1057.

    Article  CAS  Google Scholar 

  25. Ali, E.S.M. and Rogers, D.W.O., Functional forms for photon spectra of clinical linacs, Phys. Med. Biol., 2011, vol. 57, pp. 31—50.

    Article  Google Scholar 

  26. Scharf, W. and Wieszczycka, W., Electron accelerators for industrial processing—a review, AIP Conf. Proc., AIP, 1999, vol. 475, no. 1, pp. 949–952.

  27. Stein, M., Kasyanov, V.A., Chakhlov, V.L., Macleod, J., Marjoribanks, P., and Hubbard, S., Small-size betatrons for radiographic inspection, 16th World Conf. NDT, 2004. URL: https://www.ndt.net/article/ wcndt2004/pdf/radiography/104_stein.pdf

  28. Kutsaev, S., Agustsson, R., Arodzero, A., Boucher, S., Hartzell, J., Murokh A., O’Shea, and Smirnov, A.Y., Electron accelerators for novel cargo inspection methods, Phys. Procedia, 2017, vol. 90, pp. 115–125.

    Article  CAS  Google Scholar 

  29. Mizusako, F., Ogasawara, K., Kondo, K., Saito, F., and Tamura, H., Flash x-ray radiography using imaging plates for the observation of hypervelocity objects, Rev. Sci. Instrum., 2005, vol. 76, no. 2, article no. 025102.

    Article  Google Scholar 

  30. Bae, U., Shamdasani, V., Managuli, R., and Kim, Y., Fast adaptive unsharp masking with programmable mediaprocessors, J. Digital Imaging, 2003, vol. 16, no. 2, pp. 230–239.

    Article  Google Scholar 

  31. Sarangapani, R., Jose, M.T., Srinivasan, T.K., and Venkatraman, B., Determination of efficiency of an aged HPGe detector for gaseous sources by self absorption correction and point source methods, J. Instrum., 2017, vol. 12, no. 7, article no. T07006.

    Article  Google Scholar 

  32. Gavrila, C., Petrehus, V., and Gruia, I., Using Radon transform in image reconstruction, Math. Model. Civ. Eng., 2010, no. 3. URL: https://pdfs.semanticscholar.org/10d8/2c9303cb06b800aefdf6589bc568ff14e7ea.pdf

  33. Chakhlov, S.V., Kasyanov, S.V., Kasyanov, V.A., Osipov, S.P., Stein, M.M., Stein, A.M., and Xiaoming, S., Betatron application in mobile and relocatable inspection systems for freight transport control, J. Phys. Conf. Ser., IOP Publ., 2016, vol. 671, no. 1, article no. 012024.

    Google Scholar 

  34. Scientific educational cargo vehicle inspection system. URL: http://portal.tpu.ru/departments/laboratory/ rknl/eng/products/iDK

Download references

Funding

The study was conducted at Tomsk Polytechnic University as part of a grant from the Competitiveness Enhancement Program of Tomsk Polytechnic University and with financial support from PowerScan Ltd Company (China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. Osipov or S. V. Chakhlov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, S.P., Usachev, E.Y., Chakhlov, S.V. et al. Identification of Materials in Fragments of Large-Sized Objects in Containers by the Dual-Energy Method. Russ J Nondestruct Test 55, 672–686 (2019). https://doi.org/10.1134/S1061830919090043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830919090043

Keywords:

Navigation