Skip to main content
Log in

Infrared Thermography and Generation of Heat under Deformation of Bioinert Titanium- and Zirconium-Based Alloys

  • THERMAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The evolution of temperature fields and the deformation behavior of samples of VT1-0 titanium and zirconium Zr–1 wt % Nb alloys in coarse-grained and ultrafine-grained states is investigated under quasistatic stretching using infrared thermography. It is shown that the nature of the evolution of the temperature field in the process of deformation and the dependence of the maximum temperature on the strain in the working area differ for VT1-0 titanium and Zr–1 wt % Nb and depend on their structural and phase states, mechanical characteristics, and thermal diffusivity. It has been established that upon transition to the ultrafine-grained state, thermal diffusivity decreases by 6.5 and 9.3% for VT1-0 titanium and Zr–1 wt % Nb alloy, respectively. Differences in the deformation behavior of samples of VT1-0 titanium and Zr–1 wt % Nb alloy in the coarse-grained and ultrafine-grained states are associated with substructural hardening of the matrix phases of α-Ti and α-Zr and solid-solution hardening caused by the dissolution of β-Nb particles as the alloys under study are transferred into the ultrafine-grained state by severe plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Valiev, R.Z., Zhilyaev, A.P., and Langdon, T.G., Bulk Nanostructured Materials: Fundamentals and Applications, New Jersey: John Wiley & Sons, 2014.

    Google Scholar 

  2. Wells, A.A., The mechanics of notch brittle fracture, Weld. Res., 1953, vol. 7, pp. 34–56.

    Google Scholar 

  3. Brock, L.M., Effects of thermoelasticity and a von Mises condition in rapid steady-state quasi-brittle fracture, Int. J. Struct., 1996, vol. 33, no. 28, pp. 4131–4142.

    Article  Google Scholar 

  4. Moiseichik, A.E. and Moiseichik, E.A., Fundamentals of thermal testing of bearing structures using deformation heat generation, Nerazrushayushchii Kontrol’ Diagn., 2014, no. 3, pp. 3–19.

  5. Moiseichik, E.A., Heat generation and fracture initiation in stretched steel plate with a process-induced structural defect, J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 1, pp. 116–123.

    Article  Google Scholar 

  6. Moiseichik, E.K., Moiseichik, E.A., and Moiseichik, A.E., Infrared thermography of stretched steel elements with structural and technological defects, Nerazrushayushchii Kontrol’ Diagn., 2012, no. 1, pp. 3–13.

  7. Plekhov, O.A., Chudinov, V.V., Leont’ev, V.A., and Naimark, O.B., Studying the specific features of the dissipation of energy storage in submicrocrystalline titanium under quasistatic and dynamic loading, Vychisl. Mekh. Sploshnykh Sred, 2008, vol. 1, no. 4, pp. 69–77.

    Google Scholar 

  8. Plekhov, O,A, Saintier, N., and Naimark, O., Experimental study of the processes of accumulation and dissipation of energy in iron during an elastoplastic transition, J. Tech. Phys., 2007, vol. 77, no. 9, pp. 135–137.

    Google Scholar 

  9. Izyumova, A.Yu., Vshivkov, A.N., Prokhorov, A.E., Plekhov, O.A., and Venkatraman, V., Investigation of the evolution of heat sources in the process of elastoplastic deformation of OT4-0 titanium alloy based on contact and contactless measurements, Vestn. PNIPU. Mekh., 2016, no. 1, pp. 68–81.

  10. Kostina, A.A., Bayandin, Yu.V., and Plekhov, O.A., Modeling of energy accumulation and dissipation process during plastic deformation of metals, Fiz. Mezomekh., 2014, vol. 17, no. 1, pp. 43–49.

    Google Scholar 

  11. Vavilov, V.P., Infrakrasnaya termographiya i teplovoi kontrol’ (Infrared Thermography and Thermal Testing), Moscow: Spektr, 2009.

  12. Pieczyska, E.A., Maj, M., Golasiński, K., Staszczak, M., Furuta, T., and Kuramoto, S., Thermomechanical studies of yielding and strain localization phenomena of gum metal under tension, Materials, 2018 no. 11, pp. 567–579.

    Article  Google Scholar 

  13. Oliferuk, W., Maj, M., and Zembrzycki, K., Determination of the energy storage rate distribution in the area of strain localization using infrared and visible imaging, Exp. Mech., 2015, vol. 55, pp. 753–760.

    Article  Google Scholar 

  14. Maj, M. and Oliferuk, W., Analysis of plastic strain localization on the basis of strain and temperature fields, Arch. Metall. Mater., 2012, vol. 57, pp. 1111–1116.

    Article  CAS  Google Scholar 

  15. Zhang, H.X., Wu, G.H., Yan, Z.F., Guo, S.F., Chen, P.D., and Wang, W.X., An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography, Mater. Des., 2014, vol. 55, pp. 785–791.

    Article  CAS  Google Scholar 

  16. Wang. X.G., Crupi, V., Guo, X.L., and Zhao, Y.G., Quantitative thermographic methodology for fatigue assessment and stress measurement, Int. J. Fatigue, 2010, vol. 32, no. 12, pp. 1970–1976.

    Article  CAS  Google Scholar 

  17. Williams, P., Liakat, M., Khonsari, M.M., and Kabir, O.M., A thermographic method for remaining fatigue life prediction of welded joints, Mater. Des., 2013, vol. 51, pp. 916–923.

    Article  CAS  Google Scholar 

  18. Sharkeev, Yu.P., Eroshenko, A.Yu., Glukhov, I.A., Sun Zeming, Zhu Qifang, Danilov, V.I., and Tolmachev, A.I., Microstructure and mechanical properties of Ti–40 mass % Nb alloy after megaplastic deformation effect, in AIP Conf. Proc., New York: AIP Publishing, 2015, vol. 1683, pp. 200–206.

  19. Danilov, V.I., Eroshenko, A.Yu., Sharkeev, Yu.P., Orlova, D.V., Zuev, L.B., Features of the deformation and destruction of ultrafine-grained titanium- and zirconium-based alloys, Fiz. Mezomekh., 2014, vol. 17, no. 4, pp. 77–85.

    Google Scholar 

  20. Eroshenko, A.Yu., Mairambekova, A.M., Sharkeev, Yu.P., Kovalevskaya, Zh.G., Khimich, M.A., and Uvarkin, P.V., Structure, phase composition and mechanical properties in bioinert zirconium-based alloy after severe plastic deformation, Lett. Mater., 2017, vol. 7, no. 4, pp. 469–472.

    Article  Google Scholar 

  21. Koneva, N.A., Trishkina, L.I., Potekaev, A.I., and Kozlov, E.V., Strukturno-fazovye prevrashcheniya v slaboustoichivykh sostoyaniyakh metallicheskikh sistem pri termosilovom vozdeistvii (Structural-Phase Transformations in Weakly Stable States of Metallic Systems under Thermal–Force Exposure), Potekaev, A.I., Ed., Tomsk: Izd. NTL, 2015.

    Google Scholar 

  22. Kozlov, E.V., Glezer, A.M., Koneva, N.A., Popova, N.A., and Kurzina, I.A., Osnovy plasticheskoi deformatsii nanostrukturnykh materialov (Basics of Plastic Deformation of Nanostructured Materials), Moscow: Fizmatlit, 2016.

  23. Panin, V.E., Foundations of physical mesomechanics, Phys. Mesomech., 1998, no.1, pp. 5–20.

  24. Hilarov, V.L. and Slutsker, A.I., Description of the thermoelastic effect in solids in a wide temperature range, Phys. Solid State, 2014, no. 56, pp. 2493–2495.

    Article  CAS  Google Scholar 

  25. Sharkeev, Yu.P., Danilov, V.I., Eroshenko, A.Yu., Zagumennyi, A.A., Bratchikov, A.D., and Legkostaeva, E.V., Features of the structure and deformation behavior of the volume-nanostructured titanium obtained by severe plastic deformation, Deform. Razrushenie Mater., 2007, no. 7, pp. 27–31.

  26. Sharkeev, Yu.P., Legostaeva, E.V., Eroshenko, A.Yu., Khlusov, I.A., and Kashin, O.A., The structure and physical and mechanical properties of a novel biocomposite material, nanostructured titanium–calcium-phosphate coating, Compos. Interfaces, 2009, vol. 16, pp. 535–546.

    Article  CAS  Google Scholar 

  27. Eroshenko, A.Yu., Sharkeev, Yu.P., Glukhov, I.A., Uvarkin, P.V., Mairambekova, A.M., and Tolmachev, A.I., The influence of dimensions and phase state of structural elements on mechanical properties of binary alloys of the Ti–Nb and Zr–Nb systems, Russ. Phys. J., 2018, vol. 61, no. 10, pp. 1899–1907.

    Article  Google Scholar 

  28. Sharkeev, Yu.P., Skripnyak, V.A., Vavilov, V.P., Legostaeva, E.V., Kozulin, A.A., Chulkov, A.O., Eroshenko, A.Yu., Belyavskaya, O.A., Skripnyak, V.V., and Glukhov, I.A., Special aspects of microstructure, deformation and fracture of bioinert zirconium and titanium-niobium alloys in different structural states, Russ. Phys. J., 2018, vol. 61, no. 9, pp. 1718–1725.

    Article  Google Scholar 

  29. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh. Spravochnoe izdanie (Thermophysical Properties of Metals at High Temperatures. A Reference Edition), Moscow: Metallurgiya, 1989.

  30. Larikov, L.N. and Yurchenko, Yu.F., Teplovye svoistva metallov i splavov (Thermal Properties of Metals and Alloys) Kiev: Naukova Dumka, 1985.

  31. Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh (Thermophysical Properties of Materials at Low Temperatures), Moscow: Mashinostroenie, 1975.

  32. Gorbatov, V.I., Polev, V.F., Pilugin, V. P., Korshunov, I.G., Smirnov, A.L., Talutz, S.G., and Brytkov, D. A., Thermal diffusivity of submicro- and nanocrystalline niobium, titanium, and zirconium at high temperatures, High Temp., 2013. V. 51. No. 4. P. 482—485.

  33. Smirnov, A.L., Taluts, S.G., Ivliev, A.D., Gorbatov, V.I., Polev, V.F., and Korshunov, I.G., Thermal diffusivity of zirconium–niobium alloys at high temperatures, High Temp., 2017, vol. 55, no. 3, pp. 380–385.

    Article  CAS  Google Scholar 

  34. Gorbatov, V.I., Polev, V.F., Korshunov, I.G., Pilyugin, V.P., Smirnov, A.L., and Taluts, S.G., Thermal diffusivity of submicro- and nanocrystalline Zr–2.5% Nb and Zr–50% Nb alloys at high temperatures, High Temp., 2016, vol. 54, no. 2, pp. 294–296.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by the Basic Research Program of SB RAS for 2017–2020, III.23.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Legostaeva.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharkeev, Y.P., Vavilov, V.P., Skripnyak, V.A. et al. Infrared Thermography and Generation of Heat under Deformation of Bioinert Titanium- and Zirconium-Based Alloys. Russ J Nondestruct Test 55, 533–541 (2019). https://doi.org/10.1134/S1061830919070076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830919070076

Keywords:

Navigation