Skip to main content
Log in

Numerical Modeling of Radiographic Images as the Basis for Correctly Designing Digital Radiography Systems of Large-Sized Objects

  • Radiation Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A mathematical model has been developed for digital radiographic imaging of large-sized objects. The model takes account of scanning time, the parameters of source and recorder of bremsstrahlung due to the test object, and geometrical scanning scheme. A high-performance algorithm is proposed for the numerical modeling of digital radiographic images. The algorithm has allowed producing realistic images of large-sized stepped and wedge-shaped test objects and test objects typical of pipeline transport. The rationale for selecting the scanning time and the digit capacity of an analog-to-digital converter is demonstrated. Numerical simulation of radiographic images is shown to provide a basis for the correct choice of the parameters of digital radiography systems as applied to testing large objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clayton, J.E., Virshup, G., and Davis, A., Enhanced image capabilities for industrial radiography applications using megavoltage x-ray sources and digital flat panels, Health Monit. Struct. Biol. Syst. 2008, Int. Soc. Opt. Photonics, 2008, vol. 6935, article no. 69351D.

    Google Scholar 

  2. Estre, N., Eck, D., Pettier, J.L., Payan, E., Roure, C., and Simon, E., High-energy X-ray imaging applied to nondestructive characterization of large nuclear waste drums, in Adv. Nucl. Instrum. Meas. Methods Their Appl. (ANIMMA), 2013 3rd Int. IEEE Conf., 2013, pp. 1–6.

  3. Remakanthan, S., Moideenkutty, K.K., Gunasekaran, R., Thomas, C., and Thomas, C.R., Analysis of defects in solid rocket motors using X-Ray radiography, E-J. Nondestr. Test., 2015, vol. 20, pp. 6.1–6.8.

    Google Scholar 

  4. Martz, H.E., Logan, C.M., Schneberk, D.J., and Shull, P.J., X-Ray Imaging: Fundamentals, Industrial Techniques and Applications, London: CRC Press, 2016.

    Book  Google Scholar 

  5. Hamm R.W., Industrial Accelerators and Their Applications, Hamm, M.E., Ed., London: World Scientific, 2012.

    Chapter  Google Scholar 

  6. Manoir industries. Quality control. URL: http://www.manoir-industries.com/site/en/ref/Quality-Control_57.html

  7. Kozlov, S.G., Kuropatkin, Y.P., Nizhegorodtsev, V.I., Savchenko, K.V., Selemir, V.D., Urlin, E.V., and Shamro, O.A., Mobile x-ray complex based on ironless pulsed betatrons. X-ray complex conception for small-angle tomography, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 199, no. 1, article no. 012116.

  8. Ghose, B., Mall, V., Dhere, B., and Kankane, D., Digital radiography of solid rocket propellant with 4-Mev linac x-ray using computer radiography (CR) system, Natl. Semin. Exhib. Nondestr. Eval., 2011.

  9. Kutsaev, S., Agustsson, R., Arodzero, A., Boucher, S., Hartzell, J., Murokh A., O’Shea, and Smirnov, A.Y., Electron accelerators for novel cargo inspection methods, Phys. Procedia, 2017, vol. 90, pp. 115–125.

    Article  Google Scholar 

  10. Martins, M.N. and Silva, T.F., Electron accelerators: history, applications, and perspectives, Radiat. Phys. Chem., 2014, vol. 95, pp. 78–85.

    Article  Google Scholar 

  11. Granfors, P.R. and Aufrichtig, R., Performance of a 41 × 41 cm2 amorphous silicon flat panel x-ray detector for radiographic imaging applications, Med. Phys, 2000, vol. 27, no. 6, pp. 1324–1331.

    Article  Google Scholar 

  12. Von Wittenau, A.E., Logan, C.M., Aufderheide, M.B., and Slone, D.M., Blurring artifacts in megavoltage radiography with a flat-panel imaging system: comparison of Monte Carlo simulations with measurements, Med. Phys., 2002, vol. 29, no. 11, pp. 2559–2570.

    Article  Google Scholar 

  13. Michael, K.T., The application of quantitative data analysis for the assessment of flat panel x-ray detectors in digital radiography as part of a quality assurance programme, Biomed. Phys. Eng. Express, 2017, vol. 3, no. 3, article no. 035004.

  14. Yaffe, M.J. and Rowlands, J.A., X-ray detectors for digital radiography, Phys. Med. Biol., 1997, vol. 42, no. 1, pp. 1–39.

    Article  Google Scholar 

  15. Jaffray, D.A., Battista, J.J., Fenster, A., and Munro, P., X-ray scatter in megavoltage transmission radiography: physical characteristics and influence on image quality, Med. Phys., 1994, vol. 21, no. 1, pp. 45–60. doi: https://doi.org/10.1118/1.597255

    Article  Google Scholar 

  16. Stritt, C., Plamondon, M., Hofmann, J., Flisch, A., and Sennhauser, U., Performance quantification of a flat-panel imager in industrial mega-voltage X-ray imaging systems, Nucl. Instrum. Methods Phys. Res., Sect. A, 2017, vol. 848, pp. 73–80.

    Article  Google Scholar 

  17. Kotwaliwale, N., Singh, K., Kalne, A., Jha, S.N., Seth, N., and Kar, A., X-ray imaging methods for internal quality evaluation of agricultural produce, J. Food Sci. Technol., 2014, vol. 51, no. 1, pp. 1–15.

    Article  Google Scholar 

  18. Sidulenko, O.A., Kas’yanov, V.A., Kas’yanov, S.V., and Osipov, S.P., Estimated efficiency of slit collimation of a high-energy radiation source for radiometric testing of large objects, Russ. J. Nondestr. Test., 2006, vol. 42, no. 2, pp. 101–105.

    Article  Google Scholar 

  19. Osipov, S.P., Chakhlov, S.V., Osipov, O.S., Shtein, A.M., and Strugovtsev, D.V., About accuracy of the discrimination parameter estimation for the dual high-energy method, IOP Conf. Ser: Mater. Sci. Eng./RTEP2014, Tomsk, 2015, vol. 81, article no. 012082.

    Google Scholar 

  20. Zavyalkin, F.M. and Osipov, S.P., The dependence of the average value and fluctuations of the absorbed energy on the size of the scintillator, At. Energ., 1985, vol. 59, no. 4, pp. 281–283.

    Google Scholar 

  21. Schiff, L.I., Energy-angle distribution of thin target bremsstrahlung, Phys. Rev., 1951, vol. 83, pp. 252–253.

    Article  Google Scholar 

  22. Ali, E.S.M. and Rogers, D.W.O., Functional forms for photon spectra of clinical linacs, Phys. Med. Biol., 2011, vol. 57, pp. 31–50.

    Article  Google Scholar 

  23. Liu, Y., Sowerby, B.D., and Tickner, J.R., Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection, Appl. Radiat. Isot., 2008, vol. 66, no. 4, pp. 463–473.

    Article  Google Scholar 

  24. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92. URL: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients

  25. Udod, V.A., Osipov, S.P., and Wang, Y., The mathematical model of image, generated by scanning digital radiography system, IOP Conf. Ser.: Mater. Sci. Eng, IOP Publishing, 2017, vol. 168, no. 1, article no. 012042.

    Google Scholar 

  26. Zavyalkin, F.M. and Osipov, S.P. Calculation of scattering functions of linear scintillation-detector array, At. Energ., 1986, vol. 60, no. 2, pp. 146–148.

    Google Scholar 

  27. URL: http://www.instauro.co.uk/products-2/betatrons/ixb9m/

  28. Norreys, P.A., Santala, M., Clark, E., Zepf, M., Watts, I., Beg, F.N., Krushelnick, K., Tatarakis, M., Dangor, A.E., Fang, X., Graham, H., McCanny, T., Singha, R.P., Ledingham, K.W.D., Creswell, A., Sanderson, D.C.W., Magill, J., Machacek, A.J., Wark, J.S., Allott, R., Kennedy, B., and Neely, D., Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids, Phys. Plasmas, 1999, vol. 6, no. 5, pp. 2150–2156.

    Article  Google Scholar 

  29. Takagi, H. and Murata, I., Energy spectrum measurement of high power and high energy (6 and 9 MeV) pulsed X-ray source for industrial use, J. Radiat. Prot. Res., 2016, vol. 41, no. 2, pp. 93–99.

    Article  Google Scholar 

  30. Sandlin, S., X-ray inspection setups for canister lid weld, Work. Rep., Posiva Oy, Finland, 2010.

    Google Scholar 

  31. Yamnyi, K.O., Enhancing the efficiency of introscopic systems for large-sized objects with the use of low-intensity radiation sources, Extended Abstract of Cand. (Eng.) Sci. Dissertation, Belarus State Univ., Minsk, 2016.

    Google Scholar 

  32. Schumm, A., Bremnes, O., and Chassignole, B., Numerical simulation of radiographic inspections: fast and realistic results even for thick components, Proc. 16th World Conf. NonDestr. Test., Montreal, 2004.

    Google Scholar 

  33. Haith, M.I., Ewert, U., Hohendorf, S., Bellon, C., Deresch, A., Huthwaite, P., Lowe, M.J.S., and Zscherpel, U., Radiographic modelling for NDE of subsea pipelines, NDT&E Int., 2017, vol. 86, pp. 113–122.

    Article  Google Scholar 

  34. Haith, M.I., Radiographic imaging of subsea pipelines, Doctoral (Eng.) Dissertation, London: Imp. Coll., Dep. Mech. Eng., 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. Osipov or S. V. Chakhlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, S.P., Chakhlov, S.V., Kairalapov, D.U. et al. Numerical Modeling of Radiographic Images as the Basis for Correctly Designing Digital Radiography Systems of Large-Sized Objects. Russ J Nondestruct Test 55, 136–149 (2019). https://doi.org/10.1134/S1061830919020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830919020050

Keywords

Navigation