Skip to main content
Log in

Lamb Wave Ultrasonic Detection of Barely Visible Impact Damages of CFRP

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Results of applying a Lamb-wave-based ultrasonic technique to detect impact damages to a CFRP honeycomb panel are presented. The technique is based on analyzing changes in wave propagation due to defects and makes use of a network of piezoelectric transducers adhesively bonded to the panel surface. Preliminary experiments and tests have been carried out in which defect simulators (metal discs attached at various points of the CFRP panel) and low energy impact damages inflicted by drop-weight operation were detected. Results of defect location (calculated coordinates) are considered, as well as a damage index. A detailed analysis of the results has made it possible to identify the specific features and shortcomings of the technique. Possible ways are proposed for eliminating these shortcomings and upgrading the methodology of ultrasonic data processing in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrar, C.R. and Worden, K., An introduction to structural health monitoring, Philos. Trans. R. Soc., A, 2007, vol. 365, no. 1851, pp. 303–315. doi https://doi.org/10.1098/rsta.2006.1928

    Article  Google Scholar 

  2. Diamanti, K. and Soutis, C., Structural health monitoring techniques for aircraft composite structures, Prog. Aeronaut. Sci., 2010, vol. 46, no. 8, pp. 342–352. doi https://doi.org/10.1016/j.paerosci.2010.05.001

    Article  Google Scholar 

  3. Liu W., Tang B., Jiang Y. Status and problems of wind turbine in China, Renewable Energy, 2010, vol. 35, no. 7, pp. 1414–1418. doi https://doi.org/10.1016/j.renene.2010.01.006

    Article  Google Scholar 

  4. Schubel, P.J., Crossley, R.J., Boateng, E.K.G., and Hutchinson, J.R., Review of structural health and cure monitoring techniques for large wind turbine blades, Renewable Energy, 2013, vol. 51, pp. 113–123. doi https://doi.org/10.1016/j.renene.2012.08.072

    Article  Google Scholar 

  5. Makhsidov, V.V. and Reznikov, V.A., Projects aimed at the development of technology for the embedded control of structures made of PCM, Nov. Materialoved. Nauka Tekh., 2017, vol. 28, nos. 5–6, pp. 30–37.

    Google Scholar 

  6. Giurgiutiu, V. and Cuc, A., Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention, Shock Vib. Dig., 2005, vol. 37, no. 2, pp. 83–105. doi https://doi.org/10.1177/0583102405052561

    Article  Google Scholar 

  7. Güemes, A., Fernández-López, A., Díaz-Maroto, P., et al., Structural health monitoring in composite structures by fiber-optic sensors, Sensors, 2018, vol. 18, no. 4, pp. 1094. doi https://doi.org/10.3390/s18041094

    Article  Google Scholar 

  8. Eleftheroglou, N., Zarouchas, D., Loutas, T., et al., Structural health monitoring data fusion for in-situ life prognosis of composite structures, Reliab. Eng. Syst. Saf., 2018, vol. 178, pp. 40–54. doi https://doi.org/10.1016/j.ress.2018.04.031

    Article  Google Scholar 

  9. Shilova, A., Wildemann, V., Lobanov, D., and Lyamin, Yu., Experimental study of the effect of fabric high temperature treatment on the composite strength properties, PNRPU Mech. Bull., 2014, vol. 1, pp. 221–239. doi https://doi.org/10.15593/perm.mech/2014.4.09

    Article  Google Scholar 

  10. Tsepennikov, M., Strom, A., Povyshev, I., and Smetannikov, O., Theoretical-experimental study of mechanical behavior in 3D composites under quasi-steady damage, PNRPU Mech. Bull., 2016, vol. 1, pp. 143–158. doi https://doi.org/10.15593/perm.mech/2016.2.10

    Article  Google Scholar 

  11. Barsuk, V.E., Stepanova, L.N., Chernova, V.V., and Kuleshov, V.K. Acoustic emission control of defects during cyclic loading of samples of carbon fiber with shock damage, Konstr. Kompoz. Mater., 2018, vol. 149, no. 1, pp. 69–75.

    Google Scholar 

  12. Barsuk, V.E., Stepanova, L.N., and Kabanov, S.I., Composite airplane construction acoustic emission testing during static loading, Kontrol Diagn., 2018. P. 14–19. doi https://doi.org/10.14489/td.2018.04.pp.014-019

  13. Stepanova, L.N., Bataev, V.A., and Chernova, V.V., Studying the failure of a CFRP sample under static loading by the acoustic-emission and fractography methods, Russ. J. Nondestr. Test., 2017, vol. 53, no. 6, pp. 422–429. doi https://doi.org/10.1134/S1061830917060092

    Article  CAS  Google Scholar 

  14. Panozzo, F., Zappalorto, M., Maragoni, L., et al., Modelling the electrical resistance change in a multidirectional laminate with a delamination, Compos. Sci. Technol., 2018, vol. 162, pp. 25–234. doi https://doi.org/10.1016/j.compsci-tech.2018.04.031

    Article  Google Scholar 

  15. Baghalian, A., Senyurek, V.Y., Tashakori, S., et al., Novel nonlinear acoustic health monitoring approach for detecting loose bolts, J. Nondestr. Eval, 2018, vol. 37, no. 2, p. 24. doi https://doi.org/10.1007/s10921-018-0478-0

    Article  Google Scholar 

  16. Potapov, A.I. and Makhov, V.E., Methods for nondestructive testing and diagnostics of durability of articles made of polymer composite materials, Russ. J. Nondestr. Test., 2018, vol. 54, no. 3, pp. 151–163.

    Article  CAS  Google Scholar 

  17. Bhalla, S. and Kaur, N., Prognosis of low-strain fatigue induced damage in reinforced concrete structures using embedded piezo-transducers, Int. J. Fatigue, 2018, vol. 113, pp. 98–112. doi https://doi.org/10.1016/j.ijfatigue.2018.04.002

    Article  Google Scholar 

  18. Witoś, M., Zieja, M., Fallahi, N., et al., NDE and SHM of critical parts using magnetic and electromagnetic methods, Acta Phys. Pol., A, 2018, vol. 133, no. 3, pp. 697–700. doi https://doi.org/10.12693/APhysPolA.133.697

    Article  Google Scholar 

  19. Choi, Y., Abbas, S.H., and Lee, J.-R., Aircraft integrated structural health monitoring using lasers, piezoelectricity, and fiber optics, Measurement, 2018, vol. 125, pp. 294–302. doi https://doi.org/10.1016/j.measurement.2018.04.067

    Article  Google Scholar 

  20. Ignatovich, S.R., Menou, A., Karuskevich, M.V., and Maruschak, P.O., Fatigue damage and sensor development for aircraft structural health monitoring, Theor. Appl. Fract. Mech., 2013, vol. 65, pp. 23–27. doi https://doi.org/10.1016/j.tafmec.2013.05.004

    Article  Google Scholar 

  21. Panin, S., Burkov, M., Lyubutin, P., and Altukhov, Y., Application of aluminum foil for “strain sensing” at fatigue damage evaluation of carbon fiber composite, Sci. China: Phys., Mech. Astron., 2014, vol. 57, no. 1, pp. 59–64. doi https://doi.org/10.1007/s11433-013-5368-y

    Article  Google Scholar 

  22. Panin, S.V., Burkov, M.V., Lyubutin, P.S., Altukhov, Y.A., and Shakirov, I.V., Fatigue damage evaluation of carbon fiber composite using aluminum foil based strain sensors, Eng. Fract. Mech., 2014, vol. 129, no. 1, pp. 45–53. doi https://doi.org/10.1016/j.engfracmech.2014.01.003

    Article  Google Scholar 

  23. Wang, P., Takagi, T., Takeno, T., and Miki, H., Early fatigue damage detecting sensors—a review and prospects, Sens. Actuators, A, 2013, vol. 198, pp. 46–60. doi https://doi.org/10.1016/j.sna.2013.03.025

    Article  CAS  Google Scholar 

  24. Gomes, G.F., Mendéz, Y.A.D., da Silva Lopes Alexandrino, P., et al. The use of intelligent computational tools for damage detection and identification with an emphasis on composites, Compos. Struct., 2018, vol. 196, pp. 44–54. doi https://doi.org/10.1016/j.compstruct.2018.05.002

    Article  Google Scholar 

  25. Makhsidov, V.V., Yakovlev, N.O., Il’ichev, A.V., Shienok, A.M., and Firsov, L.L., Determining the deformation of PCM construction material with integrated fiber-optic sensors, Mekh. Kompoz. Mater. Strukt., 2016, vol. 22, no. 3, pp. 402–413.

    Google Scholar 

  26. Bashkov, O.V., Romashko, R.V., Zaikov, V.I., et al., Detecting acoustic-emission signals with fiber-optic interference transducers, Russ. J. Nondestr. Test., 2017, vol. 53, no. 6, pp. 415–421. doi https://doi.org/10.1134/S1061830917060031

    Article  Google Scholar 

  27. Cho, H. and Lissenden, C.J., Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves, Struct. Health Monit., 2012, vol. 11, no. 4, pp. 393–404. doi https://doi.org/10.1177/1475921711430439

    Article  Google Scholar 

  28. Glushkov, E.V., Glushkova, N.V., and Eremin, A.A., Guided wave based nondestructive testing and evaluation of effective elastic moduli of layered composite materials, Mater. Phys. Mech., 2015, vol. 23, pp. 56–60.

    CAS  Google Scholar 

  29. Lunev, A., Nadezhkin, M., and Zuev, L., Velocity and attenuation of ultrasound waves under cyclic loading of low-carbon steel, in Proc. Int. Conf. Adv. Mater. Hierarchical Struct. New Technol. Reliab. Struct., Tomsk, Russia, September 19–26, 2016, p. 20140. doi https://doi.org/10.1063/1.496643310.1063/1.4966433

    Google Scholar 

  30. Samokrutov, A. and Shevaldykin, V., Impact induced damage detecting of aircraft CFRP covering by acoustic testing, NDT World, 2015, vol. 19, no. 4, pp. 29–32. doi https://doi.org/10.12737/23501

    Article  Google Scholar 

  31. Morteau, E. and Fualdes, C., Use of probabilistic methods, in FAA Bombardier Ind. Compos. Transp. Damage Tolerance Maint. Workshop ESCAC, September 2015, Dorval, Quebec, Canada.

    Google Scholar 

  32. Sherafat, M.H., Guitel, R., Quaegebeur, N., Hubert, P., Lessard, L., and Masson, P., Structural health monitoring of a composite skin-stringer assembly using within-the-bond strategy of guided wave propagation, Mater. Des., 2016, vol. 90, pp. 787–794. doi https://doi.org/10.1016/j.matdes.2015.11.018

    Article  CAS  Google Scholar 

  33. Flynn, E.B. and Todd, M.D., A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing, Mech. Syst. Signal Process., 2010, vol. 24, no. 4, pp. 891–903. doi:https://doi.org/10.1016/j.ymssp.2009.09.003

    Article  Google Scholar 

  34. Lee, B.C. and Staszewski, W.J., Sensor location studies for damage detection with Lamb waves, Smart Mater. Struct., 2007, vol. 16, no. 2, pp. 399–408. doi https://doi.org/10.1088/0964-1726/16/2/019

    Article  CAS  Google Scholar 

  35. Moore, E.Z., Murphy, K.D., and Nichols, J.M., Optimized sensor placement for damage parameter estimation: experimental results for a cracked plate, Struct. Health Monit., 2013, vol. 12, no. 3, pp. 197–206. doi https://doi.org/10.1177/1475921713476330

    Article  Google Scholar 

  36. Nedospasov, I.A., Mozhaev, V.G., and Kuznetsova, I.E., Unusual energy properties of leaky backward Lamb waves in a submerged plate, Ultrasonics, 2017, vol. 77, pp. 95–99. doi https://doi.org/10.1016/j.ultras.2017.01.025

    Article  CAS  Google Scholar 

  37. Park, I., Jun, Y., and Lee, U., Lamb wave mode decomposition for structural health monitoring, Wave Motion, 2014, vol. 51, no. 2, pp. 335–347. doi https://doi.org/10.1016/j.wavemoti.2013.09.004

    Article  Google Scholar 

  38. Eremin, A.A., Viscosity-driven attenuation of elastic guided waves in layered composite structures, Mater. Phys. Mech., 2018, vol. 37, no. 1, pp. 42–51.

    Google Scholar 

  39. Attarian, V.A., Cegla, F.B., and Cawley, P., Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers, Struct. Health Monit., 2014, vol. 13, no. 3, pp. 265–280. doi https://doi.org/10.1177/1475921714522842

    Article  Google Scholar 

  40. Schubert, K.J., Brauner, C., and Herrmann, A.S., Non-damage-related influences on Lamb wave-based structural health monitoring of carbon fiber-reinforced plastic structures, Struct. Health Monit., 2013, vol. 13, no. 2, pp. 158–176. doi https://doi.org/10.1177/1475921713513975

    Article  Google Scholar 

  41. Wandowski, T., Malinowski, P.H., and Ostachowicz, W.M., Delamination detection in CFRP panels using EMI method with temperature compensation, Compos. Struct., 2016, vol. 151, pp. 99–107. doi https://doi.org/10.1016/j.comp-struct.2016.02.056

    Article  Google Scholar 

  42. Dodson, J.C. and Inman, D.J. Thermal sensitivity of Lamb waves for structural health monitoring applications, Ultrasonics, 2013, vol. 53, no. 3, pp. 677–685. doi https://doi.org/10.1016/j.ultras.2012.10.007

    Article  CAS  Google Scholar 

  43. Kullaa, J., Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring, Mech. Syst. Signal Process., 2011, vol. 25, no. 8, pp. 2976–2989. doi https://doi.org/10.1016/j.ymssp.2011.05.017

    Article  Google Scholar 

  44. Hahn, S.L. Hilbert Transforms in Signal Processing, Norwood: Artech House, 1996.

    Google Scholar 

  45. Lyons, R.G., Understanding Digital Signal Processing, Upper Saddle River: Prentice Hall PTR, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Burkov, P. S. Lyubutin or A. V. Byakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkov, M.V., Lyubutin, P.S. & Byakov, A.V. Lamb Wave Ultrasonic Detection of Barely Visible Impact Damages of CFRP. Russ J Nondestruct Test 55, 89–101 (2019). https://doi.org/10.1134/S1061830919020025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830919020025

Keywords

Navigation