Skip to main content
Log in

Characterization of the Damage Process of Polypropylene Fiber Mortar at Medium Loading Rate by the Full Wave Acoustic Emission Technique

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

In order to obtains the damage characteristics of the polypropylene fiber mortar at medium loading rate (10–3 s–1). The damage evolution process (A, B and C stages) of mortar specimens with different polypropylene fiber content under uniaxial tension was studied by using the full waveform acoustic emission technology. The acoustic emission wavelet energy and spectrum characteristics of cd7 frequency band were analyzed. The results showed that with the increase of the polypropylene fiber content, the peak stress increases firstly and then decreases, the elastic modulus increases gradually, the peak frequency of cd7 frequency band decreases in the A and B stages but increases in the C stages. The peak frequency of cd7 frequency band down from 30–40 kHz to 20–30 kHz with the damage accumulation, the above characteristics can be used to identify the damage stages and damage mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaguru, P., Contribution of fibers to crack reduction of cement composites the initial and final setting period, ACI Mater. J., 1994, vol. 91, no. 27, pp. 280–288.

    Google Scholar 

  2. Mindess, S., Francis Young, J., and Darwin, D., Concrete, NJ (USA): Prentice Hall, 2003, 2nd ed.

    Google Scholar 

  3. Gao, D., Yan, D., and Li, X., Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures, Fire Saf. J., 2012, vol. 54, pp. 67–73.

    Article  Google Scholar 

  4. Bošnjak, J., Ožbolt, J., and Hahn, R., Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup, Cem. Concr. Res., 2013, vol. 53, pp. 104–111.

    Article  Google Scholar 

  5. Qadi, A.L., Arabi, N.S., Mustapha, B., et al., Effect of polypropylene fibers on thermogravimetric properties of self-compacting concrete at elevated temperatures, Fire Mater., 2013, vol. 37, no. 3, pp. 177–186.

    Article  Google Scholar 

  6. Grdic, Z.J., Curcic, G.A.T, Ristic, N.S., et al., Abrasion resistance of concrete micro-reinforced with polypropylene fibers, Constr. Build. Mater., 2012, vol. 27, no. 1, pp. 305–312.

    Article  Google Scholar 

  7. Wu, Y., Sun, Q., Fang, H., et al., Surface-treated polypropylene fiber for reinforced repair mortar cementitious composites, Compos. Interfaces, 2014, vol. 21, no. 9, pp. 787–796.

    Article  Google Scholar 

  8. Behfarnia, K. and Behravan, A., Application of high performance polypropylene fibers in concrete lining of water tunnels, Mater. & Des., 2014, vol. 55, pp. 274–279.

    Article  Google Scholar 

  9. Segre, N., Tonella, E., and Joekes, I., Evaluation of the stability of polypropylene fibers in environments aggressive to cement-based materials, Cem. Concr. Res., 1998, vol. 28, no. 1, pp. 75–81.

    Article  Google Scholar 

  10. Sideris, K.K., Manita, P., and Chaniotakis, E., Performance of thermally damaged fiber reinforced concretes, Constr. Build. Mater., 2009, vol. 23, no. 3, pp. 1232–1239.

    Article  Google Scholar 

  11. Ouaar, A., Doghri., I., Delannay, L., et al., Micromechanics of the deformation and damage of steel fiber-reinforced concrete, Int. J. Damage Mech., 2007, vol. 16, no. 2, pp. 227–260.

    Article  Google Scholar 

  12. Nia, A.A., Hedayatian, M., Nili, M., et al., An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete, Int. J. Impact Eng., 2012, vol. 46, pp. 62–73.

    Article  Google Scholar 

  13. Zhang, P. and Li, Q., Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume, Compos. Part B: Eng., 2013, vol. 45, no. 1, pp. 1587–1594.

    Article  Google Scholar 

  14. Zhang, Y.F., Liu, H., Chen, J.P., et al., Numerical Simulation on PPFRC with different contents, Appl. Mech. Mater., 2013, vol. 477–478, pp. 1019–1025.

    Google Scholar 

  15. Kakooei, S., Akil, H.M., Jamshidi, M., et al., The effects of polypropylene fibers on the properties of reinforced concrete structures, Constr. Build. Mater., 2012, vol. 27, no. 1, pp. 73–77.

    Article  Google Scholar 

  16. Wang, Z.L., Liu, Y.S., and Shen, R.F., Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression, Constr. Build. Mater., 2008, vol. 22, no. 5, pp. 811–819.

    Article  Google Scholar 

  17. Li, W. and Xu, J., Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading, Mater. Sci. Eng.: A, 2009, vol. 505, no. 1, pp. 178–186.

    Article  Google Scholar 

  18. Luo, Y., Yu, C.X., and Gu, A.J., Study of the bond-slip behavior between rebar and concrete based on acoustic emission technology, J. Exp. Mech., 2011, vol. 26, no. 4, pp. 343–349.

    Google Scholar 

  19. Lai, Y.S., Xiong, Y., and Cheng, L.F., Frequency band energy characteristics of acoustic emission signals in damage process of concrete under uniaxial compression, J. Vib. Shock, 2014, vol. 33, no. 10, pp. 177–182.

    Google Scholar 

  20. Ni, Q.Q. and Iwamoto, M., Wavelet transform of acoustic emission signals in failure of model composites, Eng. Fract. Mech., 2002, vol. 69, no. 6, pp. 717–728.

    Article  Google Scholar 

  21. Liu, J.W., Wu, X.Z., and Liu, X.X., Time-frequency characteristic and recognition technology of acoustic emission generated from rock brittle fracture, Appl. Mech. Mater., 2013, vol. 405, pp. 116–119.

    Google Scholar 

  22. Lu, Y. and Li, Z., Frequency characteristic analysis on acoustic emission of mortar using cement-based piezoelectric sensors, Smart Struct. Syst., 2011, vol. 8, no. 3, pp. 321–341.

    Article  Google Scholar 

  23. Maji, A.K. and Sahu, R., Acoustic emissions from reinforced concrete, Exp. Mech., 1994, vol. 34, no. 4, pp. 379–388.

    Article  Google Scholar 

  24. Farnam, Y., Geiker, M.R., Bentz, D., et al., Acoustic emission waveform characterization of crack origin and mode in fractured and ASR damaged concrete, Cem. Concr. Compos., 2015, vol. 60, pp. 135–145.

    Article  Google Scholar 

  25. Wang, Y., Chen, S.J., Zhao, H.T., et al., Acoustic emission characteristics of interface between aggregate and mortar under shear loading, Russ. J. Nondestr. Test., 2015, vol. 51, no. 8, pp. 497–508.

    Article  Google Scholar 

  26. Perov, D.V. and Rinkevich, A.B., Using wavelets for analyzing ultrasonic fields detected by a laser interferometer. Basic concepts of the wavelet analysis, Russ. J. Nondestr. Test., 2001, vol. 37, no. 12, pp. 879–888.

    Article  Google Scholar 

  27. Perov, D.V., Rinkevich, A.B., and Smorodinskii, Ya.G., Wavelet filtering of signals from ultrasonic flaw detector, Russ. J. Nondestr. Test., 2002, vol. 38, no. 12, pp. 869–882.

    Article  Google Scholar 

  28. Perov, D.V. and Rinkevich, A.B., Dyadic-wavelet-transform filtering of ultrasonic signals detected by a laser interferometer, Russ. J. Nondestr. Test., 2002, vol. 38, no. 4, pp. 288–305.

    Article  Google Scholar 

  29. Perov, D.V., Rinkevich, A.B., Smorodinskii Ya.G., et al. Using wavelets for analyzing ultrasonic fields detected by a laser interferometer. Flaw detection and localization in an aluminum single-crystal, Russ. J. Nondestr. Test., 2001, vol. 37, no. 12, pp. 889–899.

    Article  Google Scholar 

  30. Donoho, D.L. and Johnstone, I.M., Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., 1995, vol. 90, no. 432, pp. 1200–1224.

    Article  Google Scholar 

  31. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., et al., Wavelet shrinkage: asymptopia?, in J. R. Stat. Soc. Ser. B (Methodol.), 1995, pp. 301–369.

    Google Scholar 

  32. Zhao, K., Deng, F., Jin, J.F, He, G.Q., and Liu, H.X., Wavelet analysis of Kaiser signal of rock acoustic emission and its application, Chin. J. Rock Mech. Eng., 2006, vol. 2, no. 2, pp. 3854–3588.

    Google Scholar 

  33. Liu, J. and Chen, G.X., Research on wavelet threshold de-noising methods for acoustic emission Signal, J. Shenyang Ligong Univ., 2015, vol. 34, no. 2, pp. 12–15.

    Google Scholar 

  34. Jia, L.L. and Wang, R.L., Research of AE characteristic of reinforced concrete structures, Sci. Technol. Eng., 2009, vol. 14, pp. 4234–4237.

    Google Scholar 

  35. Qi, G., Barhorst, A., Hashemi, J., et al., Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites, Compos. Sci. Technol., 1997, vol. 57, no. 4, pp. 389–403.

    Article  Google Scholar 

  36. Wang, Y., Chen, S.J., Liu, S.J, et al., Best wavelet basis for wavelet transforms in acoustic emission signals of concrete damage process, Russ. J. Nondestr. Test., 2016, vol. 52, no. 3, pp. 125–133.

    Article  Google Scholar 

  37. Cai, M., Kaiser, P.K., Morioka, H., et al., FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations, Int. J. Rock Mech. Min. Sci., 2007, vol. 44, no. 4, pp. 550–564.

    Article  Google Scholar 

  38. Sagaidak, A.I. and Elizarov, S.V., Acoustic emission parameters correlated with fracture and deformation processes of concrete members, Constr. Build. Mater., 2007, vol. 21, no. 3, pp. 477–482.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Jie, C.S., Lu, G. et al. Characterization of the Damage Process of Polypropylene Fiber Mortar at Medium Loading Rate by the Full Wave Acoustic Emission Technique. Russ J Nondestruct Test 54, 430–442 (2018). https://doi.org/10.1134/S1061830918060104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830918060104

Keywords

Navigation