Methods for Nondestructive Testing and Diagnostics of Durability of Articles Made of Polymer Composite Materials


Results of theoretical and experimental studies of the nondestructive testing of the strength properties of polymer composite materials (fiberglass) and articles produced thereof (cylindrical shells) are considered. Most attention has been paid to the ultrasonic propagation-time and acousticemission methods as well as an ultrasonic method based on measuring the velocities of longitudinal and transverse elastic waves in the tangential and axial directions of a cylindrical shell. Analytical and correlation equations have been derived that establish connection between destructive and nondestructive testing.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abramov, O.V. and Rozenbaum, A.N., Prognozirovanie sostoyaniya tekhnicheskikh sistem (Forecasting of the State of Technical Systems), Moscow: Nauka, 1990.

    Google Scholar 

  2. 2.

    Makhutov, N.A. and Permyakov, V.N., Resurs bezopasnoi ekspluatatsii sosudov i truboprovodov (Safety Resource for In-Service Vessels and Pipelines), Novosibirsk: Nauka, 2005.

    Google Scholar 

  3. 3.

    Syzrantsev, V.N. and Golofast, C.L., Izmerenie tsiklicheskikh deformatsii i prognozirovanie dolgovechnosti detalei po pokazaniyam datchikov deformatsii integral’nogo tipa (Measurement of Cyclic Deformation and Forecasting the Durability of Articles Based on Integral-Type Strain Sensors), Novosibirsk: Nauka, 2004.

    Google Scholar 

  4. 4.

    Potapov, A.I. and Savitskii, G.M., Prochnost’ i deformativnost' stekloplastikov (kontrol' v konstruktsii) (Strength and Deformability of Fiberglass (In Situ Testing)), Leningrad: Stroiizdat, 1973.

    Google Scholar 

  5. 5.

    Potapov, A.I. and Pekker, F.P., Nerazrushayushchii kontrol' konstruktsii iz kompozitsionnykh materialov (Nondestructive Testing of Constructions Made of Composite Materials), Leningrad: Mashinostroenie, 1977.

    Google Scholar 

  6. 6.

    Sborovskii, A.K., Potapov, A.I., and Polyakov, V.E., Ul’trazvukovoi kontrol' kachestva konstruktsii (Ultrasonic Testing of the Quality of Constructions), Leningrad: Sudostroenie, 1978.

    Google Scholar 

  7. 7.

    Bessonov, V.G. and Yaroshek, A.D., Nerazrushayushchii kontrol' prochnosti stekloplastikovykh rezervuarov, podvergaemykh vnutrennemu davleniyu (Nondestructive Strength Testing of Fiberglass Vessels Subjected to Internal Pressure), Kiev: Naukova Dumka, 1971.

    Google Scholar 

  8. 8.

    Potapov, A.I., Petrov, V.A., Nosov, V.V., and Pavlov, I.V., Principles of selection of acoustic-emission indicators of the strength of constructional materials, Defektoskopiya, 1995, no. 5, pp. 57–62.

    Google Scholar 

  9. 9.

    Potapov, A.I. and Nosov, V.V., On the selection of an approach to developing NDT methods for the inspection of article strength based on the use of the acoustic-emission phenomenon, Defektoskopiya, 1996, vol. 32, no. 6, pp. 39–44.

    Google Scholar 

  10. 10.

    Nosov, V.V., Potapov, A.I., and Burakov, I.N., Estimation of the strength and lifetime of technical objects using the acoustic-emission method, Russ. J. Nondestr. Test., 2009, vol. 45, no. 2, pp. 109–117.

    Article  Google Scholar 

  11. 11.

    Nosov, V.V. and Potapov, A.I., Choosing an approach for developing methods for nondestructive testing of the strength of articles based on the acoustic emission phenomenon, Russ. J. Nondestr. Test., 1996, vol. 32, no. 6, pp. 459–463.

    Google Scholar 

  12. 12.

    Nosov, V.V. and Potapov, A.I., Structural simulation model for acoustic emission parameters, Russ. J. Nondestr. Test., 1996, vol. 32, no. 6, pp. C. 451–458.

    Google Scholar 

  13. 13.

    Latishenko, V.L., Diagnostika zhestkosti i prochnosti materialov (Diagnostics of Rigidity and Strength of Materials), Riga: Zinatne, 1968.

    Google Scholar 

  14. 14.

    Teagle, P.R., The quality control and nondestructive evaluation of composite aerospace components, Composites, 1983, vol. 14, no. 2, pp. 115–128.

    Article  Google Scholar 

  15. 15.

    Review of progress in quantitative nondestructive evaluation. Vol. 1, Symp. Held August 2—7, 1981 Univ. Colo. Boulder, Thompson, D.O. and Shimenti, D.E., Eds., New York–London, 1982.

    Google Scholar 

  16. 16.

    Prakash, R., Nondestructive testing of composites, Composites, 1980, vol. 11, no. 14, pp. 217–224.

    Article  Google Scholar 

  17. 17.

    Scott, I.G. and Scala, C.M., A review of non-destructive testing of composite materials, NDT Int., 1982, vol. 15, no. 2, pp. 75–86.

    Article  Google Scholar 

  18. 18.

    Stinson, M.R. and Champoux, Y., Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries, J. Acoust. Soc. Am., 1992, vol. 91, no. 2, pp. 685–695.

    Article  Google Scholar 

  19. 19.

    Tourin, A., Derode, A., Peyre, A., and Fink, M., Transport parameters for an ultrasonic pulsed wave propagating in a multiple scattering medium, J. Acoust. Soc. Am., 2000, vol. 108, no. 2, pp. 503–512.

    Article  Google Scholar 

  20. 20.

    Sessarego, J.-P., Sageloli, J., and Guillermin, R., Scattering by an elastic sphere embedded in an elastic isotropic medium, J. Acoust. Soc. Am., 1998, vol. 104, no. 5, pp. 2836–3844.

    Article  Google Scholar 

  21. 21.

    Gurevich, B. and Schoenberg, M., Interface conditions for Biot’s equations of poroelasticity, J. Acoust. Soc. Am., 1999, vol. 105, no. 5, pp. 2585–2589.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. I. Potapov.

Additional information

Original Russian Text © A.I. Potapov, V.E. Makhov, 2018, published in Defektoskopiya, 2018, No. 3, pp. 7–19.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Potapov, A.I., Makhov, V.E. Methods for Nondestructive Testing and Diagnostics of Durability of Articles Made of Polymer Composite Materials. Russ J Nondestruct Test 54, 151–163 (2018).

Download citation


  • strength properties
  • polymer materials
  • composite materials
  • polymer composite materials
  • ultrasonic method
  • acoustic emission
  • strain sensor
  • piezoelectric sensor
  • longitudinal wave
  • transverse wave