Experimental Ultrasonic Study of the Elastic Modulus of Glass Fiber Plastics in Constructions


Results of experimental study of the elastic modulus of composite polymer materials (glass fiber plastics) by a pulsed ultrasonic method are considered. Results of the in situ elastic-modulus testing in isotropic, transverse-isotropic, and orthotropic glass fiber plastics in articles and constructions are presented. A significant distinction between a dynamic elastic modulus determined by the speed of ultrasound and a static one measured according to GOST (State Standard) 9550-81 is demonstrated. Results of studying the anisotropy of fiber glass plastics are provided.

This is a preview of subscription content, log in to check access.


  1. 1.

    GOST (State Standard) 9550-81. Plastics. Methods for determining elastic modulus under tension, compression, and bending.

  2. 2.

    Urvantsev, L.A., Nondestructive testing of composite materials abroad, in Tekh. Ekon. Inf., 1983, no. 5, pp. 60–70.

    Google Scholar 

  3. 3.

    Protasov, V.D., Issues of implementing composites in machine building, in Nauchno-tekhnicheskii progress v mashinostroenii. Vyp.1. Ser. Kompozitsionnye materialy (Scientific and Technical Progress in Machine Building. Issue 1. Series—Composite Materials), Moscow: Mezhdunar. Tsentr Nauchn. Tekh. Inf., 1987, pp. 50–53.

    Google Scholar 

  4. 4.

    Syzrantsev, V.N. and Golofast, C.L., Izmerenie tsiklicheskikh deformatsii i prognozirovanie dolgovechnosti detalei po pokazaniyam datchikov deformatsii integral’nogo tipa (Measuring Cyclic Deformations and Forecasting Durability of Articles Based on Readings of Integral Deformation Sensors), Novosibirsk: Nauka, 2004.

    Google Scholar 

  5. 5.

    Potapov, A.I. and Savitskii, G.M., Prochnost’ i deformativnost’ stekloplastikov (kontrol’ v konstruktsii) (Strength and Deformation Capacity of Glass-Fiber Plastics (In Situ Inspection)), Leningrad: Stroiizdat, 1973.

    Google Scholar 

  6. 6.

    Potapov, A.I., Nerazrushayushchii kontrol’ konstruktsii iz kompozitsionnykh materialov (Nondestructive Testing of Constructions Made of Composite Materials), Leningrad: Mashinostroenie, 1977.

    Google Scholar 

  7. 7.

    Sborovskii, A.K., Potapov, A.I., and Polyakov, V.E., Ul’trazvukovoi kontrol’ kachestva konstruktsii (Ultrasonic Quality Assurance of Constructions), Leningrad: Sudostroenie, 1978.

    Google Scholar 

  8. 8.

    Potapov, A.I., Applying pulsed low-frequency ultrasonic methods for quality checks of articles made of coarsegrain materials, Defektoskopiya, 1979, no. 7, pp. 46–50.

    Google Scholar 

  9. 9.

    Potapov, A.I., Determining elastic modulus of a two-component heterogeneous mixture with allowance for the extent of its dispersion, Mekh. Kompoz. Mater., 1981, no. 5, pp. 37–43.

    Google Scholar 

  10. 10.

    Potapov, A.I., Forecasting critical damages in articles and thin-walled construction elements under cyclic loading, Defektoskopiya, 1990, no. 10, pp. 47–52.

    Google Scholar 

  11. 11.

    Biot, M.A., Theory of propagation of elastic waves in fluid-saturated porous solid. Low-frequency range, J. Acoust. Soc. Am., 1956, vol. 28, no. 2, pp. 168–178.

    Article  Google Scholar 

  12. 12.

    Teagle, P.R., The quality control and nondestructive evaluation of composite aerospace components, Compos. IV, 1983, vol. 14, no. 2, pp. 115–128.

    Article  Google Scholar 

  13. 13.

    Review of Progress in Quantitative Nondestructive Evalution. Symposium August 2-7, 1981. Univ. Colo. Boulder, Thompson, D.O. and Shimenti, D.E., Eds., New York-London, 1982, vol.1.

  14. 14.

    Prakash, R., Nondestructive testing of composites, Compos. X, 1980, vol. 11, no. 14, pp. 217–224.

    Article  Google Scholar 

  15. 15.

    Scott, I.G. and Scala, C.M., A review of non-destructive testing of composite materials, NDT Int. IV, 1982, vol. 15, no. 2, pp. 75–86.

    Article  Google Scholar 

  16. 16.

    Tourin, A., Derode, A., Peyre, A., and Fink., M., Transport parameters for an ultrasonic pulsed wave propagating in a multiple scattering medium, J. Acoust. Soc. Am., 2000, vol. 108, no. 2, pp. 503–512.

    Article  Google Scholar 

  17. 17.

    Sessarego, J.-P., Sageloli, J., and Guillermin, R., Scattering by an elastic sphere embedded in an elastic isotropic medium, J. Acoust. Soc. Am., 1998, vol. 104, no. 5, pp. 2836–3844.

    Article  Google Scholar 

  18. 18.

    Gurevich, B. and Schoenberg, M., Interface conditions for Biot’s equations of poroelasticity, J. Acoust. Soc. Am., 1999, vol. 105, no. 5, pp. 2585–2589.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. I. Potapov.

Additional information

Original Russian Text © A.I. Potapov, V.E. Makhov, 2018, published in Defektoskopiya, 2018, No. 1, pp. 3–18.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Potapov, A.I., Makhov, V.E. Experimental Ultrasonic Study of the Elastic Modulus of Glass Fiber Plastics in Constructions. Russ J Nondestruct Test 54, 1–16 (2018). https://doi.org/10.1134/S1061830918010060

Download citation


  • composite materials
  • fiber glass plastic
  • isotropic fiber glass plastic
  • transverse-isotropic fiber glass plastic
  • orthotropic fiber glass plastic
  • elastic modulus
  • anisotropy of fiber glass plastic