Skip to main content
Log in

Applying an Ultrasonic Lamb Wave Based Rechnique to Testing the Condition of V96ts3T12 Aluminum Alloy

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Possibilities offered by an ultrasonic inspection technique that is based on using Lamb waves for monitoring the state of metal materials under static and cyclic loading have been studied. Dogbone V96ts3T12-aluminum-alloy specimens of the following two types have been used for research: initial material and a sample with a weld at the working zone center. The digital-image correlation method has been used as an additional source of information. Based on the tests, dependences of various informative parameters of acoustic vibrations on the applied load (for static tests) and running time (for cyclic tests) have been obtained. These dependences have been further supplemented with the results of calculation of deformation fields. The data gathered indicate sensitivity of the proposed ultrasonic inspection technique to various (elastic and plastic) deformation processes and allow one to monitor the growth of cracks under cyclic tests. Further development of the method assumes its examination from the viewpoint of embedded testing systems (the Structural Health Monitoring concept).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrar, C.R. and Worden, K., An introduction to structural health monitoring, Philos. Trans. R. Soc., Ser. A: Math. Phys. Eng. Sci., 2007, vol. 365, no. 1851, pp. 303–315. doi 10.1098/rsta.2006.1928

    Article  Google Scholar 

  2. Diamanti, K. and Soutis, C., Structural health monitoring techniques for aircraft composite structures, Progr. Aerosp. Sci., 2010, vol. 46, no. 8, pp. 342–352. doi 10.1016/j.paerosci.2010.05.001

    Article  Google Scholar 

  3. Liu, W., Tang, B., and Jiang, Y., Status and problems of wind turbine structural health monitoring techniques in China, Renewable Energy, 2010, vol. 35, no. 7, pp. 1414–1418. doi 10.1016/j.renene.2010.01.006

    Article  Google Scholar 

  4. Schubel, P.J., Crossley, R.J., Boateng, E.K.G., and Hutchinson, J.R., Review of structural health and cure monitoring techniques for large wind turbine blades, Renewable Energy, 2013, vol. 51, pp. 113–123. doi 10.1016/j.renene.2012.08.072

    Article  Google Scholar 

  5. Ignatovich, S.R., Menou, A., Karuskevich, M.V., and Maruschak, P.O., Fatigue damage and sensor development for aircraft structural health monitoring, Theor. Appl. Fract. Mech., 2013, vol. 65, pp. 23–27. doi 10.1016/j.tafmec.2013.05.004

    Article  Google Scholar 

  6. Panin, S., Burkov, M., Lyubutin, P., and Altukhov, Y., Application of aluminum foil for “strain sensing” at fatigue damage evaluation of carbon fiber composite, Sci. China: Phys. Mech. Astron., 2014, vol. 57, no. 1, pp. 59–64. doi 10.1007/s11433-013-5368-y

    Article  Google Scholar 

  7. Panin, S.V., Burkov, M.V., Lyubutin, P.S., Altukhov, Y.A., and Shakirov, I.V., Fatigue damage evaluation of carbon fiber composite using aluminum foil based strain sensors, Eng. Fract. Mech., 2014, vol. 129, no. 1, pp. 45–53. doi 10.1016/j.engfracmech.2014.01.003

    Article  Google Scholar 

  8. Wang, P., Takagi, T., Takeno, T., and Miki, H., Early fatigue damage detecting sensors —a review and prospects, Sens. Actuators, A: Phys., 2013, vol. 198, pp. 46–60. doi 10.1016/j.sna.2013.03.025

    Article  Google Scholar 

  9. Cho, H. and Lissenden, C.J., Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves, Struct. Health Monit., 2012, vol. 11, no. 4, pp. 393–404. doi 10.1177/1475921711430439

    Article  Google Scholar 

  10. Glushkov, E.V., Glushkova, N.V., and Eremin, A.A., Guided wave based nondestructive testing and evaluation of effective elastic moduli of layered composite materials, Mater. Phys. Mech., 2015, vol. 23, pp. 56–60.

    Google Scholar 

  11. Lunev, A., Nadezhkin, M., and Zuev, L., Velocity and attenuation of ultrasound waves under cyclic loading of low-carbon steel, Proc. Int. Conf. Adv. Mater. Hierarchical Struct. New Technol. Reliab. Struct., September 19–26, 2016, Tomsk, p. 20140. doi 10.1063/1.496643310.1063/1.4966433

    Google Scholar 

  12. Sherafat, M.H., Guitel, R., Quaegebeur, N., Hubert, P., Lessard, L., and Masson, P., Structural health monitoring of a composite skin-stringer assembly using within-the-bond strategy of guided wave propagation, Mater. Des., 2016, vol. 90, pp. 787–794. doi 10.1016/j.matdes.2015.11.018

    Article  Google Scholar 

  13. Flynn, E.B. and Todd, M.D., A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing, Mech. Syst. Signal Process., 2010, vol. 24, no. 4, pp. 891–903. doi 10.1016/j.ymssp.2009.09.003

    Article  Google Scholar 

  14. Lee, B.C. and Staszewski, W.J., Sensor location studies for damage detection with Lamb waves, Smart Mater. Struct., 2007, vol. 16, no. 2, pp. 399–408. doi 10.1088/0964-1726/16/2/019

    Article  Google Scholar 

  15. Moore, E.Z., Murphy, K.D., and Nichols, J.M., Optimized sensor placement for damage parameter estimation: experimental results for a cracked plate, Struct. Health Monit., 2013, vol. 12, no. 3, pp. 197–206. doi 10.1177/1475921713476330

    Article  Google Scholar 

  16. Nedospasov, I.A., Mozhaev, V.G., and Kuznetsova, I.E., Unusual energy properties of leaky backward Lamb waves in a submerged plate, Ultrasonics, 2017, vol. 77, pp. 95–99. doi 10.1016/j.ultras.2017.01.025

    Article  Google Scholar 

  17. Park, I., Jun, Y., and Lee, U., Lamb wave mode decomposition for structural health monitoring, Wave Motion, 2014, vol. 51, no. 2, pp. 335–347. doi 10.1016/j.wavemoti.2013.09.004

    Article  Google Scholar 

  18. Attarian, V.A., Cegla, F.B., and Cawley, P., Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers, Struct. Health Monit., 2014, vol. 13, no. 3, pp. 265–280. doi 10.1177/1475921714522842

    Article  Google Scholar 

  19. Schubert, K.J., Brauner, C., and Herrmann, A.S., Non-damage-related influences on Lamb wave-based structural health monitoring of carbon fiber-reinforced plastic structures, Struct. Health Monit., 2013, vol. 13, no. 2, pp. 158–176. doi 10.1177/1475921713513975

    Article  Google Scholar 

  20. Wandowski, T., Malinowski, P.H., and Ostachowicz, W.M., Delamination detection in CFRP panels using EMI method with temperature compensation, Compos. Struct., 2016, vol. 151, pp. 99–107. doi 10.1016/j.compstruct. 2016.02.056

    Article  Google Scholar 

  21. Dodson, J.C. and Inman, D.J., Thermal sensitivity of Lamb waves for structural health monitoring applications, Ultrasonics, 2013, vol. 53, no. 3, pp. 677–685. doi 10.1016/j.ultras.2012.10.007

    Article  Google Scholar 

  22. Kullaa, J., Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring, Mech. Syst. Signal Process., 2011, vol. 25, no. 8, pp. 2976–2989. doi 10.1016/j.ymssp.2011.05.017

    Article  Google Scholar 

  23. Hahn, S.L., Hilbert Transforms in Signal Processing, Norwood: Artech House, 1996.

    Google Scholar 

  24. Eremin, A., Byakov, A., Panin, S., Burkov, M., Lyubutin, P., and Sunder, R., Application of a Lamb waves based technique for structural health monitoring of GFRP under cyclic loading, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 124, p. 12084. doi 10.1088/1757-899X/124/1/012084

    Article  Google Scholar 

  25. Wildemann, V.E., Spaskova, E.V., and Shilova, A.I., Research of the damage and failure processes of composite materials based on acoustic emission monitoring and method of digital image correlation, Solid State Phenom., 2015, vol. 243, pp. 163–170. 10.4028/www.scientific.net/SSP.243.163

    Article  Google Scholar 

  26. Staszewski, W.J., Lee, B.C., Mallet, L., and Scarpa, F., Structural health monitoring using scanning laser vibrometry: I. Lamb wave sensing, Smart Mater. Struct., 2004, vol. 13, no. 2, pp. 251–260. doi 10.1088/0964- 1726/13/2/002

    Article  Google Scholar 

  27. Burkov, M.V., Eremin, A.V., Byakov, A.V., Shah, R.T., Lyubutin, P.S., and Panin, S.V., Lamb wave based ultrasonic technique for AA2024 fatigue evaluation, Key Eng. Mater., 2016, vol. 685, pp. 399–402. doi 10.4028/www.scientific.net/KEM.685.399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Burkov.

Additional information

Original Russian Text © M.V. Burkov, A.V. Eremin, P.S. Lyubutin, A.V. Byakov, S.V. Panin, 2017, published in Defektoskopiya, 2017, No. 12, pp. 3–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkov, M.V., Eremin, A.V., Lyubutin, P.S. et al. Applying an Ultrasonic Lamb Wave Based Rechnique to Testing the Condition of V96ts3T12 Aluminum Alloy. Russ J Nondestruct Test 53, 817–829 (2017). https://doi.org/10.1134/S1061830917120038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830917120038

Keywords

Navigation