Skip to main content
Log in

Theoretical aspects of applying love and SH-waves to nondestructive testing of stratified media

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Research into applications of acoustic SH-waves and Love waves to nondestructive testing of stratified media is reviewed. A mathematical model has been developed for describing the propagation of waves with horizontal polarization (SH-waves and Love waves) in anisotropic (monoclinic) stratified media. A modified transfer-matrix method (TM-method) has been developed in order to obtain the solution. Noncanonical-type waves with horizontal transverse polarization have been studied. The dispersion curves have been obtained for a multilayer composite that is in contact with an anisotropic semi-infinite space. It has been shown that the physical characteristics and geometry of any internal layer can be determined based on changes in the dispersion curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Odagawa, H., Meguro, T., and Yamanouchi, K., 5GHz range low-loss wide band surface acoustic wave filters using electrode thickness difference type unidirectional transducers, Jpn. J. Appl. Phys., 1996, vol. 35, no. 5B, pp. 3028–3031.

    Article  Google Scholar 

  2. Odagawa, H. and Yamanouchi, K., 10GHz range extremely low-loss surface acoustic wave filter, Electron Letters, 1998, vol. 34, no. 9, pp. 865–866.

    Article  Google Scholar 

  3. Odagawa, H. and Yamanouchi, K., 10GHz range extremely low-loss ladder type surface acoustic wave filter, IEEE Ultrason. Symp. Proc., 1998, pp. 103–106.

    Google Scholar 

  4. Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Stratified Media), Moscow: Nauka, 1973.

    Google Scholar 

  5. Eckhause, T.A., et al., Generation and propagation of coherent THz folded acoustic phonons, Quantum Electron. Laser Sci. Conf., Baltimore, 2003.

    Google Scholar 

  6. Huynha, A., et al., Optical excitation and detection of terahertz acoustic waves with semiconductor superlattices, J. Phys.: Conf. Ser., 2010, vol. 214. doi 10.1088/1742-6596/214/1/012047

  7. Gol'dshtein, R.V., Kaptsov, A.V., and Kuznetsov, S.V., Methods of molecular dynamics in the theory of acoustic waves, in Aktual’nye problemy mekhaniki (Topical Problems in Mechanics), Moscow: Nauka, 2009, pp. 56–75.

    Google Scholar 

  8. Brillouin, L., Lest enseurs en Mecanique et en Elasticite, Paris: Gautier, 1938.

    Google Scholar 

  9. Brillouin, L. and Parodi, M., Propagation des Ondes dans les Milieux Periodiques, Paris: Masson et Cie, 1956.

    Google Scholar 

  10. Achenbach, D., Wave Propagation in Elastic Solids, Amsterdam: North-Holland, 1975.

    Google Scholar 

  11. Adler, E.L., Matrix methods applied to acoustic waves in multilayers, IEEE Trans., 1990, UFFC 37, pp. 485–490.

    Article  Google Scholar 

  12. Lowe, M.J.S., Matrix techniques for modeling ultrasonic waves in multilayered structures, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1995, vol. 42, pp. 525–542.

    Article  Google Scholar 

  13. Park, J., Surface waves in layered anisotropic structures, Geophys. J. Int., 1996, vol. 126, pp. 173–183.

    Article  Google Scholar 

  14. Royer, D. and Dieulesaint, E., Rayleigh wave velocity and displacement in orthorombic, tetragonal, and cubic crystals, J. Acoust. Soc. Am., 1985, vol. 76, no. 5, pp. 1438–1444.

    Article  Google Scholar 

  15. Ting, T.C.T. and Barnett, D.M., Classifications of surface waves in anisotropic elastic materials, Wave Motion, 1997, vol. 26, pp. 207–218.

    Article  Google Scholar 

  16. Castagnede, W. and Sachse, W., Optimized determination of elastic constants of anisotropic solids from wavespeed measurements, Rev. Prog. QNDE, 1988, pp. 1855–1862.

    Google Scholar 

  17. Dayal, V. and Kinra, V.K., Leaky lamb waves in an anisotropic plate. 2. Nondestructive evaluation of matrix cracks in fiber-reinforced composites, J. Acoust. Soc. Am., 1991, vol. 89, pp. 1590–1598.

    Article  Google Scholar 

  18. Dieulesaint, E. and Royer, D., Elastic Waves in Solids, New York: Wiley, 1980.

    Google Scholar 

  19. Doxbeck, M.A., Hussain, M.A., Rama, J., Abate, A., and Frankel, J., An algorithm for the determination of coating properties from laser generated and detected Rayleigh waves using wavelet analysis, Rev. Prog. QNDE, 2002, vol. 21, pp. 292–299.

    Google Scholar 

  20. Dunkin, J.W., Computation of modal solutions in layered elastic media at high frequencies, Bull. Seism. Soc. Am, 1965, vol. 55, pp. 335–358.

    Google Scholar 

  21. Kline, R.A. and Chen, Z.T., Ultrasonic technique for global anisotropic property measurement in composite materials, Mater. Eval., 1988, pp. 986–992.

    Google Scholar 

  22. Kline, R., Jiang, L., and Drescher-Krasicka, E., Application of scanning acoustic microscopy to residual stress analysis: theory vs. experiment, Rev. Prog. QNDE, 1995, pp. 1907–1914.

    Google Scholar 

  23. Kline, R.A., Green, R.E., and Palmer, C.H., Acoustic emission waveforms from stress corrosion cracking of 4340 steel, J. Appl. Phys., 1981, vol. 52, pp. 141–147.

    Article  Google Scholar 

  24. Yang, W. and Kundu, T., Guided-waves in multilayered plates for internal defect detection, J. Eng. Mech. ASCE, 1998, vol. 124, pp. 311–318.

    Article  Google Scholar 

  25. Kuznetsov, S.V., Subsonic Lamb waves in anisotropic plates, Quart. Appl. Math., 2002, vol. 60, pp. 587–597.

    Google Scholar 

  26. Trusdell, K.A., Pervonachal’nyi kurs ratsional’noi mekhaniki sploshnykh sred (Introductory Course to the Rational Mechanics of Continua), Moscow: Nauka, 1975.

    Google Scholar 

  27. Kuznetsov, S.V., Surface waves of non-Rayleigh type, Q. Appl. Math., 2003, vol. 61, pp. 575–582.

    Article  Google Scholar 

  28. Kuznetsov, S.V., Love waves in stratified monoclinic media, Q. Appl. Math., 2004, vol. 62, no. 4, pp. 749–766.

    Article  Google Scholar 

  29. Landolt-Börnstein Physikalisch-Chemische Tabellen (German Edition), Nabu Press, 2010.

  30. Viktorov, I.A., Volny Releya i Lemba (Rayleigh and Lamb Waves), Moscow: Nauka, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ilyashenko.

Additional information

Original Russian Text © A.V. Ilyashenko, S.V. Kuznetsov, 2017, published in Defektoskopiya, 2017, No. 9, pp. 3–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyashenko, A.V., Kuznetsov, S.V. Theoretical aspects of applying love and SH-waves to nondestructive testing of stratified media. Russ J Nondestruct Test 53, 597–603 (2017). https://doi.org/10.1134/S1061830917090078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830917090078

Keywords

Navigation