Russian Journal of Nondestructive Testing

, Volume 53, Issue 2, pp 148–158 | Cite as

The effect of water-cement ratio on acousto-ultrasonic characteristics in mortar

  • Y. Wang
  • H. X. Hu
  • S. J. Liu
  • S. J. Chen
  • Z. Z. Xu
Ultrasonic Methods


A self-improved and debugged acousto-ultrasonic system was used to investigate the effect of water cement ratio (w/c ratio) on ultrasonic pulse wave propagation and find more accurate and effective evaluation parameters than the traditional ultrasonic pulse velocity (UPV). An experimental study on the uniaxial compression test and acousto-ultrasonic test of mortar cylinder with different w/c ratios (0.4, 0.5, 0.6) was presented. The results showed that the increase of w/c ratios deteriorated the mortar mechanical properties with the compressive strength decreased and reduced the UPV. The high w/c ratio also leaded high attention of wave amplitude and energy. Through analysis of the ultrasonic pulse waveforms, the maximum peak amplitude (AE parameter) couldn’t reflect the real change of the waveforms. The parameter energy, which is mainly determined by the average amplitude, showed a higher sensitivity to the mortar w/c ratio and more accurate reflection of the changes of the waveforms with different w/c ratios. Compared with other parameters, the energy could be used to evaluate the cement based material properties changes caused by the changes of composition and external effect.


acousto-ultrasonic mortar w/c ratio ultrasonic pulse wave compressive strength UPV amplitude AE energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vergara, L., Miralles, R., Gosalbez, J., et al., NDE ultrasonic methods to characterize the porosity of mortar, NDT & E Int., 2001, no. 34, pp. 557–562.CrossRefGoogle Scholar
  2. 2.
    Vipulanandan, C. and Victor Garas, V, Electrical resistivity, pulse velocity, and compressive properties of carbon fiber-reinforced cement mortar, J. Mater. Civ. Eng., 2008, vol. 20, no. 2, pp. 93–101.CrossRefGoogle Scholar
  3. 3.
    Goueygou, M., Lafhaj, Z., and Soltani, F, Assessment of porosity of mortar using ultrasonic Rayleigh waves, NDT & E Int., 2009, vol. 42, no. 5, pp. 353–360.CrossRefGoogle Scholar
  4. 4.
    Liu, S., Zhu, J., Seraj, S., Cano, R., and Juenger, M, Monitoring setting and hardening process of mortar and concrete using ultrasonic shear waves, Constr. Build. Mater., 2014, vol. 72, pp. 248–255.CrossRefGoogle Scholar
  5. 5.
    Gabrijel, I., Mikulic, D., and Bijelic, N, Ultrasonic characterization of cement composites during hydration, Tech. Gaz., 2010, vol. 17, no. 4, pp. 493–497.Google Scholar
  6. 6.
    Borgerson, J.L. and Reis, H, Monitoring the setting and hardening of early-age mortar using a pulse-echo ultrasonic guided wave approach, Insight: Nondestr. Testing Cond. Monit., 2007, vol. 49, no. 4, pp. 207–212.CrossRefGoogle Scholar
  7. 7.
    Chen, H.L. and Wissawapaisal, K, Study of acoustic surface waveguides on reinforced concrete slabs, J. Nondestr. Eval., 2000, vol. 19, no. 4, pp. 129–140.CrossRefGoogle Scholar
  8. 8.
    Liu, Z., Evaluation of Reinforced Concrete Beams Using Cyclic Load Test—Acoustic Emission and Acousto-Ultrasonic, Shanghai: Tongji University, 2003.Google Scholar
  9. 9.
    Warnemuende, K. and Wu, H.C, High sensitivity NDE in concrete—enhancement of energy dispersion using acoustic perturbation, Proc. SPIE, 2004, no. 5394, pp. 127–138.CrossRefGoogle Scholar
  10. 10.
    Shah, A.A. and Ribakov, Y, Effectiveness of nonlinear ultrasonic and acoustic emission evaluation of concrete with distributed damages, Mater. Des., 2010, vol. 31, no. 8, pp. 3777–3784.CrossRefGoogle Scholar
  11. 11.
    Pullin, R., Eaton, M.J., Pearson, M.R., et al., Assessment of bonded patch bridge repairs using acoustic emission and acousto-ultrasonics, Key Eng. Mater., 2012, no. 518, pp. 57–65.CrossRefGoogle Scholar
  12. 12.
    Stoll, S.C, Application of Acousto-Ultrasonic Technique in Evaluation of Bond Strength between Composite and Concrete Substrates, Univ. Louisville, 2009.Google Scholar
  13. 13.
    Philippidis, T.P. and Aggelis, D.G, An acousto-ultrasonic approach for the determination of water-to-cement ratio in concrete, Cem. Concr. Res., 2003, vol. 33, no. 4, p. 525–538.CrossRefGoogle Scholar
  14. 14.
    Aggelis, D.G., Polyzos, D., Philippidis, T.P., et al., Nondestructive estimation of mortar’s composition and strength using acousto-ultrasonics, Proc. First Hellenic Conf. Concr. Compos. Mater., Xanthi, 2000, pp. 49–71.Google Scholar
  15. 15.
    Wang, Y., Wu, S.X., Chen, S., et al., Experimental study on acoustic emission characteristics of splitting damage processes for different ages of concrete, Appl. Mech. Mater., 2012, vols. 105–107, pp. 976–980.Google Scholar
  16. 16.
    Yan, W., Haitao, Z., Jinxin, Y., et al. Experimental study on acoustic emission characteristics of split failure processes for aggregate-mortar interface, J. Build. Mater., 2014, vol. 17, no. 2, pp. 212–215.Google Scholar
  17. 17.
    Yan, W., Youtao, Z., Hongxiang, H., et al., Identification of damage degree of concrete by acoustic emission and artificial neural network, J. Build. Mater., 2014, vol. 17, no. 4, pp. 672–676.Google Scholar
  18. 18.
    Al-Akhras, N. and Al-Qadi, I, Using ultrasonic waves to detect basic properties of Portland cement concrete, Indian Concr. J., 1998, vol. 72, no. 1, pp. 33–37.Google Scholar
  19. 19.
    Toutanji, H.A., El-Korchi, T, Tensile and compressive strength of silica fume-cement pastes and mortars, Cem. Concr. Aggregates, 1996, vol. 18, no. 2, pp. 78–84.CrossRefGoogle Scholar
  20. 20.
    Kim, Y.-Y., Lee, K.-M., Bang, J.-W., and Kwon, S.-J., Effect of w/c ratio on durability and porosity in cement mortar with constant cement amount, Adv. Mater. Sci. Eng., 2014, vol. 2014, pp. 1–11.Google Scholar
  21. 21.
    Goueygou, M., Lafhaj, Z., and Fethi Soltani, F, Assessment of porosity of mortar using ultrasonic Rayleigh waves, NDT & E Int., 2009, vol. 42, no. 5, pp. 353–360.CrossRefGoogle Scholar
  22. 22.
    Soltani, F., Goueygou, M., Lafhaj, Z., et al., Relationship between ultrasonic Rayleigh wave propagation and capillary porosity in cement paste with variable water content, NDT & E Int., 2013, vol. 54, pp. 75–83.CrossRefGoogle Scholar
  23. 23.
    Zhu, J., Kee, S.-H., Han, D., et al., Effects of air voids on ultrasonic wave propagation in early age cement pastes, Cem. Concr. Res., 2011, vol. 41, no. 8, pp. 872–881.CrossRefGoogle Scholar
  24. 24.
    Tharmaratnam, K. and Tan, B.S, Attenuation of ultrasonic pulse in cement mortar, Cem. Concr. Res., 1990, vol. 20, pp. 335–345.CrossRefGoogle Scholar
  25. 25.
    Bogas, J.A., Gomes, M.G., and Gomes, A, Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method, Ultrason., 2013, vol. 53, no. 5, p. 962–972.CrossRefGoogle Scholar
  26. 26.
    Lin, Y., Kuo, S.-F., Hsiao, C., and Lai, C.-P., Investigation of pulse velocity-strength relationship of hardened concrete, ACI Mater. J., 2007, vol. 104, no. 4, pp. 344–350.Google Scholar
  27. 27.
    Trtnik, G., Kavcic, F., and Turk, G, Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks, Ultrason., 2009, vol. 49, no. 1, pp. 53–60.CrossRefGoogle Scholar
  28. 28.
    Al-Ameeri, A.S., Hussain, K.-A., and Essa, M, Predicting a mathematical model of some mechanical properties of concrete from non-destructive testing, Civ. Environ. Res., 2013, vol. 3, no. 10, pp. 78–97.Google Scholar
  29. 29.
    Omer, S.A., Demirboga, R., and Khushefati, W.H, Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures, Constr. Build. Mater., 2015, vol. 94, pp. 189–195.CrossRefGoogle Scholar
  30. 30.
    Zhang, J., Fan, T., Ma, H., et al., Monitoring setting and hardening of concrete by active acoustic method: effects of water-to-cement ratio and pozzolanic materials, Constr. Build. Mater., 2015, vol. 88, pp. 118–125.CrossRefGoogle Scholar
  31. 31.
    Al-Akhras, N.M. and Al-Qadi, I.L, Detection of ASR in PCC using ultrasonic waves, in Materials for the New Millennium, Washington DC., 1996.Google Scholar
  32. 32.
    Akhras, N.M, Detecting freezing and thawing damage in concrete using signal energy, Cem. Concr. Res., 1998, vol. 28, no. 9, pp. 1275–1280.CrossRefGoogle Scholar
  33. 33.
    Bray, D.E. and Mcbride, D, Nondestructive testing techniques, Qual. Reliab. Eng. Int., 1993, vol. 9, no. 2, pp. 159–166.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Y. Wang
    • 1
  • H. X. Hu
    • 1
  • S. J. Liu
    • 1
  • S. J. Chen
    • 1
  • Z. Z. Xu
    • 1
  1. 1.College of civil and transportation engineeringHohai universityNanjingChina

Personalised recommendations