Russian Journal of Nondestructive Testing

, Volume 53, Issue 2, pp 104–110 | Cite as

Development prospects for nondestructive testing of heterogeneous nonmetallic materials by the parameters of electrical response to a shock action

  • T. V. Fursa
  • G. E. Utsyn
  • D. D. Dann
  • M. V. Petrov
Electrical Methods

Abstract

Theoretical and experimental research has been conducted into the mechanisms of generation of electric fields under elastic shock excitation of heterogeneous nonmetallic materials that contain two types of mechanoelectric transductions, viz., double electrical layers at interphase boundaries and piezoelectric inclusions. Using the example of electrical responses from samples of heavy- and light-weight concretes and based on numerical modeling results, prospects are shown for using this phenomenon in nondestructive testing of heterogeneous nonmetallic materials that do not contain piezoelectric inclusions, e.g., layered and reinforced ones.

Keywords

nondestructive testing heterogeneous nonmetallic materials electrical response model of mechanoelectric transductions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koktavy, P, Experimental study of electromagnetic emission signals generated by crack generation in composite materials, Meas. Sci. Technol., 2009, vol. 20, no. 1.Google Scholar
  2. 2.
    Triantis, D., Stavrakas, I., Kyriazopoulos, A., Hloupis, G., and Agioutantis, Z, Pressure stimulated electrical emissions from cement mortar used as failure predictors, Int. J. Fract., 2012, vol. 175, no. 1, pp. 53–61.CrossRefGoogle Scholar
  3. 3.
    Fursa, T.V., Savelev, A.V., and Osipov, K.Yu., Interrelation between electromagnetic response parameters and impact excitation characteristics in insulators, Tech. Phys., 2003, vol. 48, no. 11, pp. 1419–1424.CrossRefGoogle Scholar
  4. 4.
    Surzhikov, A.P. and Fursa, T.V, Mechanoelectrical transformations upon the elastic impact excitation of composite dielectric materials, Tech. Phys., 2008, vol. 53, no. 4, pp. 462–465.CrossRefGoogle Scholar
  5. 5.
    Fursa, T.V. and Dann, D.D, Mechanoelectrical transformations in heterogeneous materials with piezoelectric inclusions, Tech. Phys., 2011, vol. 56, no. 8, pp. 1112–1117.CrossRefGoogle Scholar
  6. 6.
    Neishtadt, N.M., Eppelbaum, L.V., and Levitski, A.G, Application of piezoelectric and seismoelectrokinetic phenomena in exploration geophysics: review of Russian and Israeli experiences, Geophys., 2006, vol. 71, no. 2, pp. 41–53.CrossRefGoogle Scholar
  7. 7.
    Osipov, K.Yu. and Fursa, T.V, Evaluating the depth of open cracks in concrete from parameters of electric response to elastic impact excitation, Tech. Phys. Lett., 2013, vol. 39, no. 5, pp. 481–483.CrossRefGoogle Scholar
  8. 8.
    Fursa, T.V., Dann, D.D., Petrov, M.V., and Korzenok, I.N, Effect of cyclic freezing–thawing on the parameters of electric response to elastic shock excitation of reinforced concrete, Russ. J. Nondestr. Testing, 2016, vol. 52, no. 8, pp. 463–468.CrossRefGoogle Scholar
  9. 9.
    Fursa, T.V., Osipov, K.Yu., and Dann, D.D, Development of a nondestructive method for testing the strength of concrete with a faulted structure based on the phenomenon of mechanoelectric transformations, Russ. J. Nondestr. Testing, 2011, vol. 47, no. 5, pp. 323–328.CrossRefGoogle Scholar
  10. 10.
    Fursa, T.V., Osipov, K.Yu., Lyukshin, B.A., and Utsyn, G.E, The development of a method for crack-depth estimation in concrete by the electric response parameters to pulse mechanical excitation, Meas. Sci. Technol., 2014, vol. 25, no. 5.Google Scholar
  11. 11.
    Sansalone, M. and Carino, N.J, Impact-Echo: a Method for Flaw Detection in Concrete Using Transient Stress Waves—NBSIR 86-3452,. Natl. Bur. Stand., September 1986.Google Scholar
  12. 12.
    Fursa, T.V., Lyukshin, B.A., and Utsyn, G.E, Relation between the electric response and the characteristics of elastic waves under shock excitation of heterogeneous dielectric materials with piezoelectric inclusions, Tech. Phys., 2013, vol. 58, no. 2, pp. 263–266.CrossRefGoogle Scholar
  13. 13.
    MacCormack, R.W., A Numerical Method for Solving the Equations of Compressible Viscous Flow, St. Louis, Missouri: AIAA, 1981.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. V. Fursa
    • 1
  • G. E. Utsyn
    • 1
  • D. D. Dann
    • 1
  • M. V. Petrov
    • 1
  1. 1.Institute of Nondestructive TestingTomsk Polytechnic UniversityTomskRussia

Personalised recommendations