Skip to main content
Log in

Development of passive ultrasonic tomography techniques

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Passive ultrasonic tomography is described. Results of developing, modeling, and testing some key techniques in passive ultrasonic tomography are provided. The techniques include an algorithm for determining arrival times of noisy acoustic signals with sloping leading edge; a method for determining the source coordinates and onset times of acoustic signals and estimating the accuracy of those; and regularizing procedures for tomographic reconstruction of nonuniform distributions of propagation speed of acoustic signals. The results of modeling the effect of measurement noises on the accuracy of source location and the mutual influence of the source location accuracy and the soughtfor nonuniform distribution of propagation speed of acoustic signals are described. Results of experimental testing of the developed techniques are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schubert, F., Basic principles of acoustic emission tomography, J. Acoust. Emiss., 2004, vol. 22, pp. 147–158.

    Google Scholar 

  2. Kadomtsev, A.G., Damaskinskaya, E.E., and Kuksenko, V.S., Fracture features of granite under various deformation conditions, Phys. Solid State, 2011, vol. 53, no. 9, pp. 1876–1881.

    Article  Google Scholar 

  3. Murav'ev, V.V., Zuev, L.B., and Komarov, K.L., Skorost’ zvuka i struktura stalei i splavov (Sonic Speed and Structure of Steels and Alloys), Novosibirsk: Nauka, 1996.

    Google Scholar 

  4. Nedoseka, A.Ya. and Nedoseka, S.A., On estimates of reliability of in-service constructions, Tekh. Diagn. Nerazrushayushchii Kontrol’, 2010, no. 2, pp. 7–17.

    Google Scholar 

  5. Goryunov, A.A. and Saskovets, A.V., Obratnye zadachi rasseyaniya v akustike (Inverse Scattering Problems in Acoustics), Moscow: Mosk. Gos. Univ., 1989.

    Google Scholar 

  6. Kuchment, P. and Kunyansky, L., Mathematics of photoacoustic and thermoacoustic tomography, in Handbook of Mathematical Methods in Imaging, New York: Springer-Verlag, 2011, vol. 1, 2nd ed.

  7. Gulyaev, Yu.V., Bograchev, K.M., Borovikov, I.P., Obukhov, Yu.V., and Pasechnik, V.I., Passive thermoacoustic tomography: methods and approaches, Radiotekh. Elektron., 1998, vol. 43, no. 9, pp. 140–146.

    Google Scholar 

  8. Louis, A.K. and Quinto, E.T., Local Tomographic Methods in Sonar. Surveys on Solution Methods for Inverse Problems, Vienna: Springer, 2000.

    Google Scholar 

  9. Sedlak, P., Sikula, J., Lokajicek, T., and Mori, Y., Acoustic and electromagnetic emission as tool for crack localization, Meas. Sci. Technol., 2008, vol. 19, pp. 1–7.

    Article  Google Scholar 

  10. Orlov, V.V. and Kovalenko, A.Yu., Modeling configurations of sensor networks for eliminating the ambiguity of determining the coordinates in passive location, Elektron. Model., 2010, vol. 32, no. 2, pp. 107–115.

    Google Scholar 

  11. Romanyshyn, R., I. Modeling technologies of acoustic-emission tomography for plane-parallel sheet articles, Mater. vidkritoi naukovo-tekh. konf. molodikh naukovtsiv i spetsialistiv Fiziko-mekhanichnii Institut im. G.V. Karpenka NAN Ukraini (Proc. Open Sci.-Tech. Conf. of Young Scientists and Researchers at the Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine), Lvov: Fiz.-Mekh. Inst. Im. G.V. Karpenka, 2009, pp. 358–361.

    Google Scholar 

  12. Kalitkin, N.N., Yukhno, L.F., and Kuz’mina, L.V., Quantitative criterion of conditioning for systems of linear algebraic equations, Math. Models Comput. Simul., 2011, vol. 23, no. 2, pp. 541–556.

    Article  Google Scholar 

  13. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1986.

    Google Scholar 

  14. Nedoseka, A.Ya., Nedoseka, S.A., Gruzd, A.A., Ovsienko, M.A., Yaremenko, M.A., and Kharchenko, L.F., Devices for acoustic-emission testing and diagnostics of welded constructions, Avtom. Svarka, 2010, no. 8, pp. 58–62.

    Google Scholar 

  15. Stepanova, L.N., Kanifadin, K.V., and Ramazanov, I.S., The influence of temperature on the characteristics of piezoelectric transducers and errors of localization of acoustic-emission signals, Russ. J. Nondestr. Test., 2010, vol. 46, no. 5, pp. 377–385.

    Article  Google Scholar 

  16. Romanyshyn, I.M. and Romanyshyn, R.I., Comparison of acoustic-emission tomography images to an etalon, Russ. J. Nondestr. Test., 2009, vol. 45, no. 1, pp. 50–60.

    Article  Google Scholar 

  17. Romanyshyn, R., I. A method for determining arrival times of signals with overextended edges for acousticemission tomography problems, Mater. VI Vseukr. naukovo-tekh. Konf. molodikh uchenikhi i spetsialistiv “Zvaryuvannya ta sporidneni tekhnologi” (Proc. All-Ukr. Conf. of Young Scientists and Professionals “Welding Related Technologies”), Vorzel’, 2011.

    Google Scholar 

  18. Stepanova, L.N., Ramazanov, I.S., and Kanifadin, K.V., Estimation of time-of-arrival errors of acoustic-emission signals by the threshold method, Russ. J. Nondestr. Test., 2009, vol. 45, no. 4, pp. 273–279.

    Article  Google Scholar 

  19. http://www.ism.kiev.ua/departmens/index.php?i=63.

  20. Ivochkin, A.Yu., Karabutov, A.A., Lyamshev, M.L., Pelivanov, I.M., Rokhatgi, U., and Subudkhi, M., Measurement of velocity distribution for longitudinal acoustic waves in welds by a laser optoacoustic technique, Acoust. Phys., 2007, vol. 53, no. 4, pp. 471–477.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Koshovyi.

Additional information

Original Russian Text © V.V. Koshovyi, I.M. Romanyshyn, R.I. Romanyshyn, P.M. Semak, R.V. Sharamaga, 2016, published in Defektoskopiya, 2016, No. 10, pp. 3–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshovyi, V.V., Romanyshyn, I.M., Romanyshyn, R.I. et al. Development of passive ultrasonic tomography techniques. Russ J Nondestruct Test 52, 539–553 (2016). https://doi.org/10.1134/S1061830916100065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830916100065

Keywords

Navigation