Skip to main content
Log in

Application of the sessile-drop method for the quality control of nanostructured polymers for medical use

  • Other Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The efficiency of the sessile-drop method for the quality control of nanostructured polymers for medical use is studied. The theoretical bases of the proposed method are presented and the results of experimental studies, which prove the efficiency of its use for the detection of different defect categories in nanostructured polymers, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanik, A.A., Hwang, M., Arta, A., Chang, T.Y., and Altug, H., Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes, Appl. Phys. Lett., 2010, no. 96(2), p. 3.

    Article  Google Scholar 

  2. Chung, Y.C., Jan, M.S., Lin, Y.C., Lin, J.H., Cheng, W.C., and Fan, C.Y., Microfluidic chip for high efficiency DNA extraction, Lab. Chip, 2010, no. 4(2), pp. 141–147.

    Article  Google Scholar 

  3. Cheng, X.H., Chen, G., and Rodriguez, W.R., Microand nanotechnology for viral detection, Anal. Bioanal. Chem., 2009, no. 393(2), pp. 487–501.

    Article  Google Scholar 

  4. Squires, T.M., Messinger, R.J., and Manalis, S.R., Making it stick: convection, reaction and diffusion in surface-based biosensors, Nat. Biotechnol., 2008, no. 26(4), pp. 417–426.

    Article  Google Scholar 

  5. Coulter, J.P., Rajagopalan, P., Gomatam, R., Angelov, A., Kim, Y., and Jaafar, I.H., Realization of polymerbased nanostructured surfaces for biomedical applications via nanoscale injection molding, in Society of Plastics Engineers (ANTEC Proc. 60th Annu. Techn. Conf.), 2008 p. 66.

    Google Scholar 

  6. Leach, R., Fundamental Principles of Engineering Nanometrology, Elsevier, 2010.

    Google Scholar 

  7. Sindo, D. and Oikava, T., Analiticheskaya prosvechivayushchaya elektronnaya mikroskopiya (Analytical Transmission Electron Microscopy), Moscow: Tekhnosfera, 2006.

    Google Scholar 

  8. Lapshin, R.V. and Nalwa, H.S., Encyclopedia of Nanoscience and Nanotechnology, USA: American Scientific Publishers, 2011, no. 14, pp. 105–115.

    Google Scholar 

  9. Bouen, D.K. and Tanner, B.K., Vysokorazreshayushchaya rentgenovskaya difraktometriya i topografiya (HighResolution X-Ray Diffractometry and Topography), St. Petersburg: Nauka, 2002.

    Google Scholar 

  10. Ishchenko, A.A., Girichev, G.V., and Tarasov, Yu.I., Difraktsiya elektronov: struktura i dinamika svobodnykh molekul i kondensirovannogo sostoyaniya veshchestva (Electron Diffraction: Structure and Dynamics of Free Molecules and Condensed Matter), Moscow: Fizmatlit, 2012.

    Google Scholar 

  11. Bekker, Yu., Spektroskopiya (Spectroscopy), Moscow: Tekhnosfera, 2009.

    Google Scholar 

  12. Chau, T.T., A review of techniques for measurement of contact angles and their applicability on mineral surfaces, Miner. Eng, 2009, no. 22, pp. 13–219.

    Article  Google Scholar 

  13. Drelich, J., Guidelines to measurements of reproducible contact angles using a sessile-drop technique, Surface innovations, 2013, no. 1(4), pp. 248–254.

    Article  Google Scholar 

  14. Lin, F., Shuhong, L., Yingshun, L., and Huanjun, L., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater, 2002, no. 14, pp. 1857–1860.

    Article  Google Scholar 

  15. Roach, P., Shirtcliffe, N.J., and Newton, M.I., Progess in superhydrophobic surface development, Soft Matter, 2008, no. 4(2), p. 224.

    Article  Google Scholar 

  16. Jung, Y.C. and Bhushan, B., Contact angle, adhesion and friction properties of microand nanopatterned polymers for superhydrophobicity, Nanotechnology, 2006, no. 17, pp. 4970–4980.

    Article  Google Scholar 

  17. Yoshimitsu, Z., Effects of surface structure on the hydrophobicity and sliding behavior of water droplets, Langmuir, 2002, no. 18, pp. 5818–5822.

    Article  Google Scholar 

  18. Barbieri, L., Wagner, E., and Hoffmann, P., Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles, Langmuir, 2007, no. 23, pp. 1723–1734.

    Article  Google Scholar 

  19. Kijlstra, J., Reihs, K., and Klami, A., Roughness and topology of ultra-hydrophobic surfaces, Colloids Surf. A: Physicochem. Eng. Aspects, 2002, no. 206, pp. 521–529.

    Article  Google Scholar 

  20. Wenzel, R.N., Resistance of solid surfaces to wetting by water, Indust. Eng. Chem, 1936, no. 28, pp. 988–994.

    Article  Google Scholar 

  21. Cassie, A. and Baxter, S., Wetting of porous surfaces, Trans. Faraday Soc., 1944, no. 40, pp. 546–551.

    Article  Google Scholar 

  22. Rodgers, J.W., Bekisli, B., and Coulter, J.P., Microinjection molding of polymers for biomimickry of organ tissue, Plast. Eng., 2012, no. 68(10), pp. 8–12.

    Google Scholar 

  23. Angelov, A.K. and Coulter, J.P., The development and characterization of polymer micro-injection molded gratings, J. Polym. Eng. Sci., 2009, no. 48(11), pp. 2169–2177.

    Article  Google Scholar 

  24. Michaeli, W. and Potsch, G., Injection Molding: an Introduction, 2nd ed, Munich: Hanser, 2008.

    Google Scholar 

  25. Liou, A.C., Injection molding of polymer microand sub-micron structures with high-aspect ratios, Int. J. Adv. Des. Manuf. Technol., 2006, no. 28, pp. 1097–1103.

    Article  Google Scholar 

  26. Heckele, M. and Schomberg, W.K., Review on micro molding of thermoplastic polymers, J. Micromech. Microeng., 2004, no. 14.

  27. Modjarrad, K. and Ebnesajjad, S., Handbook of Polymer Applications in Medicine and Medical Devices, Oxford: Elsevier, 2014.

    Google Scholar 

  28. Von Baeyer, H.C., The lotus effect, The Sciences, 2000, no. 40, pp. 12–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Barshutina.

Additional information

Original Russian Text © M.N. Barshutina, J.P. Coulter, 2015, published in Defektoskopiya, 2015, Vol. 51, No. 12, pp. 68–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barshutina, M.N., Coulter, J.P. Application of the sessile-drop method for the quality control of nanostructured polymers for medical use. Russ J Nondestruct Test 51, 768–778 (2015). https://doi.org/10.1134/S1061830915120025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830915120025

Keywords

Navigation