Skip to main content
Log in

Eddy-current testing of fatigue degradation under contact loading of NiCrBSi coatings obtained through gas–powder laser cladding

  • Eddy-Current Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The possibilities of using the eddy-current method for testing the fatigue degradation under contact loading of NiCrBSi coatings were investigated. These coatings are obtained using the method of the gas–powder laser cladding from powders with different contents of chromium, boron, carbon, and additives of titanium carbide TiC (15 and 25 wt. %). It was established that eddy-current testing of fatigue degradation under contact loading of PG-SR2 and PG-10N-01 coatings can be performed at high excitation frequencies of an eddy-current transducer, when the depth of the analyzed layer is maximally close to the thickness of the surface layer that was subjected to fatigue degradation. Testing the fatigue degradation under contact loading of TiC–PG-SR2 composite coatings with TiC-additive contents of 15 and 25 wt. % has certain limitations and features that result from the presence of a significant number of discontinuity flaws in the structure of these coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orlov, A.V., Chermenskii, O.N., and Nesterov, V.M., Ispytaniya konstruktsionnykh materialov na kontaktnuyu ustalost' (Contact-Fatigue Tests of Structural Materials), Moscow: Mashinostroenie, 1980.

    Google Scholar 

  2. Jia, H., Wu, X., Liu, X., Liu, C., and Wang, Z., Analysis and research of acoustic emission signal of rolling element bearing fatigue, Chapter in book: Advances in Acoustic Emission Technology: Proc. of the World Conf. on Acoustic Emission-2013, Eds. Shen, G., Wu, Z., and Zhang, J., Springer Proc. in Physics, 2015, vol. 158, pp. 157–166.

    Google Scholar 

  3. Nohál, L., Hort, F., Dvořáček, J., and Mazal, P., An experimental investigation of rolling contact fatigue of steels using acoustic emission method, Insight: Non-Destruct. Test. Condition Monitor., 2013, vol. 55, no. 12, pp. 665–669.

    Article  Google Scholar 

  4. Piao, Z.-Y., Xu, B.-S., Wang, H.-D., and Wen, D.-H., Investigation of acoustic emission source of Fe-based sprayed coating under rolling contact, Int. J. Fatig., 2013, vol. 47, pp. 184–188.

    Article  Google Scholar 

  5. Guo-Lu, L., Zhi-Qiang, Z., Hai-Dou, W., Bin-Shi, X., Zhong-Yu, P., and Li-Na, Z., Acoustic emission monitoring and failure mechanism analysis of rolling contact fatigue for Fe-based alloy coating, Tribol. Int., 2013, vol. 61, pp. 129–137.

    Article  Google Scholar 

  6. Mazal, P., Dvoracek, J., and Pazdera, L., Application of acoustic emission method in contact damage identification, Int. J. Mater. Prod. Technol., 2011, vol. 41, nos. 1–4, pp. 140–152.

    Article  Google Scholar 

  7. Piao, Z.-Y., Xu, B.-S., Wang, H.-D., and Pu, C.-H., Investigation of fatigue failure prediction of Fe–Cr alloy coatings under rolling contact based on acoustic emission technique, Appl. Surf. Sci., 2011, vol. 257, pp. 2581–2586.

    Article  Google Scholar 

  8. Rahman, Z., Ohba, H., Yoshioka, T., and Yamamoto, T., Incipient damage detection and its propagation monitoring of rolling contact fatigue by acoustic emission, Tribol. Int., 2009, vol. 42, pp. 807–815.

    Article  Google Scholar 

  9. Thomas, H.-M., Dey, A., and Heyder, R., Eddy current test method for early detection of rolling contact fatigue (RCF) in rails, Insight: Non-Destr. Test. Condition Monitor., 2010, vol. 52, no. 7, pp. 361–365.

    Article  Google Scholar 

  10. Nicholas, M.J. and Hope, A.D., High-speed detection of rolling contact fatigue in railway rails, Insight: NonDestr. Test. Condition Monitor., 2006, vol. 48, no. 6, pp. 346–347.

    Article  Google Scholar 

  11. Chacón Muñoz, J.M., García Márquez, F.P., and Papaelias, M., Railroad inspection based on ACFM employing a non-uniform B-spline approach, Mech. Syst. Sign. Process., 2013, vol. 40, no. 2, pp. 605–617

    Article  Google Scholar 

  12. Rowshandel, H., Nicholson, G.L., Davis, C.L., and Roberts, C., A robotic approach for NDT of RCF cracks in rails using an ACFM sensor, Insight: Non-Destr. Test. Condition Monitor., 2011, vol. 53, no. 7, pp. 368–376.

    Article  Google Scholar 

  13. Wilson, J., Tian, G., Mukriz, I., and Almond, D., PEC thermography for imaging multiple cracks from rolling contact fatigue, NDT and E Int., 2011, vol. 44, no. 6, pp. 505–512.

    Article  Google Scholar 

  14. Deneuville, F., Duquennoy, M., Ouaftouh, OurakM., Jenot, F., and Desvaux, S., High-frequency ultrasonic detection of C-crack defects in silicon nitride bearing balls, Ultrasonics, 2009, vol. 49, pp. 89–93.

    Article  Google Scholar 

  15. Pau, M., Leban, B., and Baldi, A., Simultaneous subsurface defect detection and contact parameter assessment in a wheel-rail system, Wear, 2008, vol. 265, pp. 1837–1847.

    Article  Google Scholar 

  16. Edwards, R.S., Holmes, C., Fan, Y., Papaelias, M., Dixon, S., Davis, C.L., Drinkwater, B.W., and Roberts, C., Ultrasonic detection of surface-breaking railhead defects, Insight: Non-Destr. Test. Condition Monitor., 2008, vol. 50, no. 7, pp. 369–373.

    Article  Google Scholar 

  17. Edwards, R.S., Dixon, S., Fan, Y., and Jian, X., EMAT measurements of inand out-of-plane ultrasonic signals, AIP Conf. Proc., 2008, vol. 975, pp. 841–848.

    Article  Google Scholar 

  18. Yoshioka, T. and Shimizu, S., Monitoring of ball bearing operation under grease lubrication using a new compound diagnostic system detecting vibration and acoustic emission, Tribol. Transact., 2009, vol. 52, no. 6, pp. 725–730.

    Article  Google Scholar 

  19. Aurichio, T., Cumino, R., de Oliveira, C.D.M., Dourado, L., and Silva, W.S., Contact fatigue wear evaluation of thrust rolling bearings lubricated with greases with molybdenum disulfide or graphite, SAE Int. J. Fuels Lubric., 2010, vol. 3, no. 2, pp. 386–394.

    Article  Google Scholar 

  20. Thomas, H.-M., Heckel, T., and Hanspach, G., Advantage of a combined ultrasonic and eddy current examination for railway inspection trains, Insight: Non-Destr. Test. Condition Monitor., 2007, vol. 49, no. 6, pp. 341–344.

    Article  Google Scholar 

  21. Tushinskii, L.I., Bataev, V.A., Potapov, V.M., Bataev, A.A., and Timofeev, A.P., Life of hardened materials under the conditions of contact load, Met. Sci. Heat Treat., 1988, vol. 30, no. 5, pp. 363–365.

    Article  Google Scholar 

  22. Tarrés, E., Ramírez, G., Gaillard, Y., Jiménez-Piqué, E., and Llanes, L., Contact fatigue behavior of PVDcoated hard metals, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 323–331.

    Article  Google Scholar 

  23. Bataev, I.A., Bataev, A.A., Golkovski, M.G., Krivizhenko, D.S., Losinskaya, A.A., and Lenivtseva, O.G., Structure of surface layers produced by nonvacuum electron beam boriding, Appl. Surf. Sci., 2013, vol. 284, pp. 472–481.

    Article  Google Scholar 

  24. Savrai, R.A., Makarov, A.V., Soboleva, N.N., Malygina, I.Yu., and Osintseva, A.L., The contact endurance of NiCrBSi coatings obtained by gas powder laser cladding, Obrab. Metal.: Tekhnol., Oborud., Instrum., 2014, no. 4 (65), pp. 43–51.

    Google Scholar 

  25. Latella, B.A., Atanacio, A.J., and Liu, T., Fatigue damage mechanisms in CeO-stabilized tetragonal ZrO2, J. Mater. Sci. Lett., 2002, vol. 21, no. 11, pp. 879–882.

    Article  Google Scholar 

  26. Pinegin, S.V., Kontaktnaya prochnost’ v mashinakh (Contact Strength in Machines), Moscow: Mashinostroenie, 1965.

    Google Scholar 

  27. Makarov, A.V., Korshunov, L.G., Malygina, I.Yu., and Osintseva, A.L., Effect of laser quenching and subsequent heat treatment on the structure and wear resistance of a cemented steel 20KhN3A, Phys. Met. Metallogr., 2007, vol. 103, no. 5, pp. 507–518.

    Article  Google Scholar 

  28. Makarov, A.V., Gorkunov, E.S., Malygina, I.Yu., Kogan, L.Kh., Savrai, R.A., and Osintseva, A.L., Eddy-current testing of the hardness, wear resistance, and thickness of coatings prepared by gas–powder laser cladding, Russ. J. Nondestr. Test., 2009, vol. 45, no. 11, pp. 797–805.

    Article  Google Scholar 

  29. Makarov, A.V., Gorkunov, E.S., and Kogan, L.Kh., Application of the eddy-current method for estimating the wear resistance of hydrogen-alloyed-titanium BT35 alloy, Russ. J. Nondestr. Test., 2007, vol. 43, no. 1, pp. 21–26.

    Article  Google Scholar 

  30. Bakunov, A.S., Muzhitskii, V.F., and Shubochkin, S.E., A modern solution to problems of eddy-current structuroscopy, Russ. J. Nondestr. Test., 2004, vol. 40, no. 5, pp. 346–349.

    Article  Google Scholar 

  31. Makarov, A.V., Gorkunov, E.S., Savrai, R.A., Kogan, L.Kh., Yurovskikh, A.S., Kolobylina, Yu.M., Malygina, I.Yu., and Davydova, N.A., The influence of a combined strain–heat treatment on the features of electromagnetic testing of fatigue degradation of quenched constructional steel, Russ. J. Nondestr. Test., 2013, vol. 49, no. 12, pp. 690–704.

    Article  Google Scholar 

  32. Makarov, A.V., Savrai, R.A., Gorkunov, E.S., Malygina, I.Yu., Kogan, L.Kh., Pozdeeva, N.A., and Kolobylin, Yu.M., Effect of friction-induced hardening on the features of magnetic and eddy-current behavior of an annealed structural steel under cyclic loading conditions, Russ. J. Nondestr. Test., 2008, vol. 44, no. 7, pp. 496–508.

    Article  Google Scholar 

  33. Gorkunov, E.S., Savrai, R.A., Makarov, A.V., Kogan, L.Kh., and Rogovaya, S.A., Application of an eddy-current method for the assessment of stored plastic deformation and residual mechanical properties after cyclic loading of an annealed medium-carbon steel, Russ. J. Nondestr. Test., 2007, vol. 43, no. 4, pp. 228–233.

    Article  Google Scholar 

  34. Makarov, A.V., Gorkunov, E.S., Kogan, L.Kh., and Malygina, I.Yu., Estimation of the quality of strengthening frictional treatment and subsequent tempering of eutectoid steel by the eddy-current method, Russ. J. Nondestr. Test., 2009, vol. 45, no. 2, pp. 133–142.

    Article  Google Scholar 

  35. Makarov, A.V., Gorkunov, E.S., Savrai, R.A., Kolobylin, Yu.M., Kogan, L.Kh., Yurovskikh, A.S., Pozdeeva, N.A., and Malygina, I.Yu., The peculiarities of magnetic and eddy-current testing of quenched structural steel hardened by nanostructuring frictional treatment Russ. J. Nondestr. Test., 2012, vol. 48, no. 11, pp. 615–622.

    Article  Google Scholar 

  36. Makarov, A.V., Gorkunov, E.S., Kogan, L.Kh., Kolobylin, Yu.M., Korshunov, L.G., and Osintseva, A.L., Features of electromagnetic methods for testing the wear resistance of medium-carbon structural steel subjected to laser or bulk hardening and tempering, Russ. J. Nondestr. Test., 2006, vol. 42 no. 7, pp. 443–451.

    Article  Google Scholar 

  37. Makarov, A.V., Kogan, L.Kh., Gorkunov, E.S., and Kolobylin, Yu.M., Eddy-current evaluation of wear resistance of case-hardened chromium–nickel 20KhN3A steel, Russ. J. Nondestr. Test., 2001, vol. 37, no. 2, pp. 136–144.

    Article  Google Scholar 

  38. Makarov, A.V., Gorkunov, E.S., Kolobylin, Yu.M., Kogan, L.Kh., Korshunov, L.G., Malygina, I.Yu., and Osintseva, A.L., Eddy-current testing of the wear resistance of laser-hardened carburized chromonickel steel and the quality of laser hardening of drill bits, Russ. J. Nondestr. Test., 2009, vol. 45, no. 10, pp. 698–710.

    Article  Google Scholar 

  39. Makarov, A.V., Gorkunov, E.S., Kogan, L.Kh., Kolobylin, Yu.M., and Osintseva A.L., Eddy-current and coercive-force testing of abrasion-resistant ShKh15 ball bearing steel subjected to laser and bulk thermal processing, Russ. J. Nondestr. Test., 2006, vol. 42, no. 10, pp. 639–647.

    Article  Google Scholar 

  40. Makarov, A.V., Savrai, R.A., Osintseva, A.L., and Malygina, I.Yu., The influence of chemical composition on tribological properties of laser clad CrNi-based coatings, Izv. Chelyabinsk. Nauchn. Tsentra, 2009, no. 2 (44), pp. 28–33.

    Google Scholar 

  41. Soboleva, N.N., Malygina, I.Yu., Osintseva, A.L., and Pozdeeva, N.A., Influence of the microstructure and phase composition on the tribological properties of laser coatings, Izv. Samar. Nauch. Tsentra RAN, 2011, vol. 13, no. 4 (3), pp. 869–873.

    Google Scholar 

  42. Makarov, A.V., Soboleva, N.N., Malygina, I.Yu., and Osintseva, A.L., Formation of a NiCrBSi–TiC composite coating with increased abrasive wear resistance by the method of gas–powder laser cladding, Uprochn. Tekhnol. Pokryt., 2013, no. 11 (107), pp. 38–44.

    Google Scholar 

  43. Soboleva, N.N., Makarov, A.V., and Malygina, I.Yu., Hardening frictional treatment of NiCrBSi laser clad coating, Obrab. Metal. (Tekhnol., Oborud., Instrum.), 2013, no. 4 (61), pp. 79–85.

    Google Scholar 

  44. Dawei, Z., Li, T., and Lei, T.C., Laser cladding of Ni–Cr3Cr2/(Ni+Cr), composite coating, Surf. Coat. Technol., 1988, vol. 110, pp. 81–85.

    Article  Google Scholar 

  45. Li, Q., Zhang, D., Lei, T., Chen, Ch., and Chen, W., Comparison of laser-clad and furnace-melted Ni-based alloy microstructures, Surf. Coat. Technol., 2001, vol. 137, pp. 122–135.

    Article  Google Scholar 

  46. Llanes, L., Tarrés, E., Ramírez, G., Botero, C.A., and Jiménez-Piqué, E., Fatigue susceptibility under contact loading of hard metals coated with ceramic films, Proced. Engin., 2010, vol. 2, pp. 299–308.

    Article  Google Scholar 

  47. Ramírez, G., Mestra, A., Casas, B., Valls, I., Martínez, R., Bueno, R., Góez, A., Mateo, A., and Llanes, L., Influence of substrate microstructure on the contact fatigue strength of coated cold-work tool steels, Surf. Coat. Technol., 2012, vol. 206, pp. 3069–3081.

    Article  Google Scholar 

  48. Caron, I., De Monicault, J.M., and Gras, R., Influence of surface-coatings on titanium-alloy resistance to fretting fatigue in cryogenic environment, Tribol. Int., 2001, vol. 34, pp. 217–223.

    Article  Google Scholar 

  49. He, Q., Guo, S., and Liu, W., Analysis of chemical valence of the elements of the oxidized surface layer of a thermally sprayed Ni–Cr coating under fretting, Surf. Coat. Technol., 1998, vol. 106, pp. 91–93.

    Article  Google Scholar 

  50. Dorofeev, A.L., Induktsionnaya strukturoskopiya (Induction Structuroscopy), Moscow: Energiya, 1973.

    Google Scholar 

  51. Dyakin, V.V. and Sandovskii, V.A., Teoriya i raschet nakladnykh vikhretokovykh preobrazovatelei (Theory and Calculation of Attachable EC Transducers), Moscow: Nauka, 1981.

    Google Scholar 

  52. Wijn, H.P.J., Magnetic Properties of Metals. d-Elements, Alloys, and Compounds, Springer Berlin Heidelberg, 1991.

    Book  Google Scholar 

  53. Konyaeva, M.A. and Medvedeva, N.I., Electron structure, magnetic properties, and stability of (Fe, Cr)3C and (Fe, Cr)7C3 binary and ternary carbides, Fiz. Tverd. Tela, 2009, vol. 51, no. 10, pp. 1965–1969.

    Google Scholar 

  54. Kazantseva, N.V., Korolev, A.V., Davydov, D.I., Vinogradova, N.I., Rigmant, M.B., and Stepanova, N.N., Concentration inhomogeneity and magnetism in a blade produced of a refractory nickel alloy, Materialovedenie, 2013, no. 4, pp. 18–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Savrai.

Additional information

Original Russian Text © R.A. Savrai, A.V. Makarov, E.S. Gorkunov, L.Kh. Kogan, N.N. Soboleva, I.Yu. Malygina, A.L. Osintseva, 2015, published in Defektoskopiya, 2015, Vol. 51, No. 11, pp. 43–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savrai, R.A., Makarov, A.V., Gorkunov, E.S. et al. Eddy-current testing of fatigue degradation under contact loading of NiCrBSi coatings obtained through gas–powder laser cladding. Russ J Nondestruct Test 51, 692–704 (2015). https://doi.org/10.1134/S1061830915110042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830915110042

Keywords

Navigation