Skip to main content
Log in

The topography of the field and flux inside and above the surfaces of ferromagnetic plates during their contact and contactless magnetization

  • Magnetic and Electromagnetic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Modeling and experimental studies of the spatial distributions of the field and flux inside and above the surface of ferromagnetic plates of different dimension types, which were locally magnetized by U-shaped electromagnets, were performed. It was established that the location of a magnetic inhomogeneity in the interpole zone of an electromagnet substantially affects the results of a local measurement of the coercive force using a demagnetization current. It is shown that the presence of a gap in the magnetic circuit impairs the magnetization of the interpole zone of an object to a higher degree than the magnetization of the near-pole zone. Recommendations on the concentration of the magnetic flux in the interpole zone via a decrease in the interpole distance of the electromagnet are given. Possible locations of internal-field probes that provide local measurements of the magnetic properties of a substance are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakharov, V.A. and Gorkunov, E.S., Coercimeters with magnetic attachments (review), Russ. J. Nondestr. Test., 1995, vol. 31,Issue 8, pp. 625–641.

    Google Scholar 

  2. Bida, G.V. and Nichipuruk, A.P., Coercive force measurements in nondestructive testing, Russ. J. Nondestr. Test., 2000, vol. 31,Issue 10, pp. 707–727.

    Article  Google Scholar 

  3. www.instrumentalist.ru/Koercitimetr-KIM-2M.htm

  4. Bezlyud’ko, G.Ya., Muzhitskii, V.F., and Remezov, V.B., Series of portable structuroscope-instruments based on measuring the coercive force, Russ. J. Nondestr. Test., 2003, no. 4, pp. 289–296.

    Google Scholar 

  5. Gorkunov, E.S. and Tabachnik, V.P., Study of arrangement efficiency of hall sensors of an attachable magnetic instrument used for recording the coercive force of a local area of an article, Russ. J. Nondestr. Test., 2008, vol. 44,Issue 6, pp. 375–379.

    Article  Google Scholar 

  6. Bakunov, A.S., Gorkunov, E.S., and Shcherbinin, V.E., Magnitnyi kontrol’ (Magnetic Testing), Moscow: ID Spektr, 2011.

    Google Scholar 

  7. Kostin, V.N. and Bida, G.V., The magnetic structuroscope MS-2, Sov. J. Nondestr. Test. USSR, 1989, vol. 25, no. 2, p. 94–97.

    Google Scholar 

  8. Shanaurin, A.M., Veksler, A.V., Nichipuruk, A.P., Bida, G.V., and Vatolin, S.M., SM-401 magnetic structuroscope, Russ. J. Nondestr. Test., 2002, vol. 38,Issue 6, pp. 431–437.

    Article  Google Scholar 

  9. Mel’gui, M.A., Magnitnyi kontrol’ mekhanicheskikh svoistv stalei (Magnetic Testing of Mechanical Properties of Steels), Minsk: Nauka i tekhnika, 1980.

    Google Scholar 

  10. Krinchik, G.S., Fizika magnitnykh yavlenii (Physics of Magnetic Phenomena), Moscow: Izd. MGU, 1985.

    Google Scholar 

  11. Coey, J.M.D., Magnetism and magnetic materials, New York: Cambridge University Press, 2010.

    Book  Google Scholar 

  12. Tumanski, S., Handbook of Magnetic Measurements, Boca Raton: CRC Press, 2011.

    Book  Google Scholar 

  13. Kostin, V.N., Osintsev, A.A., Stashkov, A.N., et al., Multiparameter methods for structural analysis of steel articles using the magnetic properties of substances, Russ. J. Nondestr. Test., 2004, vol. 40,Issue 3, pp. 197–208.

    Article  CAS  Google Scholar 

  14. Kostin, V.N., Tsar’kova, T.P., and Sazhina, E.Y., Measurements of relative magnetic parameters of materials in tested components incorporated in closed circuits, Russ. J. Nondestr. Test., 2001, vol. 37,Issue 1, pp. 10–19.

    Article  CAS  Google Scholar 

  15. Kostin, V.N., Osintsev, A.A., Stashkov, A.N., et al., Portable instruments for multiparameter magnetic evaluation of material structures, Russ. J. Nondestr. Test., 2008, vol. 44,Issue 4, pp. 280–289.

    Article  Google Scholar 

  16. Mikheev, M.N., Topography of the magnetic induction in articles under their local magnetization with an electromagnet, Izv. AN SSSR, 1948, no. 3–4, pp. 68–77.

    Google Scholar 

  17. Skal’skii, V.R., Klim, B.P., and Pochapskii, E.P., Calculation of the induction of a constant magnetic field created in a ferromagnet by an attachable electromagnet, Russ. J. Nondestr. Test., 2010, vol. 46,Issue 5, pp. 324–332.

    Article  Google Scholar 

  18. Skal’skii, V.R., Klim, B.P., and Pochapskii, E.P., Distribution of the induction of a quasi-stationary magnetic field created in a ferromagnet by an attachable electromagnet, Russ. J. Nondestr. Test., 2012, vol. 48,Issue 1, pp. 23–34.

    Article  Google Scholar 

  19. Kostin, V.N., Lukinykh, O.N., Smorodinskii, Ya.G., et al., Simulation of field and inductance spatial distribution in locally magnetized massive objects and optimization of U-shaped transducer design, Russ. J. Nondestr. Test., 2010, vol. 46,Issue 6, pp. 403–410.

    Article  CAS  Google Scholar 

  20. Kostin, V.N. and Vasilenko, O.N., Local measurement of the coercive-return induction in the presence of a gap in the transducer-object combined circuit. Russ. J. Nondestr. Test., 2012, vol. 48,Issue 7, pp. 391–400.

    Article  Google Scholar 

  21. Kostin, V.N. and Vasilenko, O.N., On new possibilities for making local measurements of the coercive force on ferromagnetic objects, Russ. J. Nondestr. Test., 2012, vol. 48,Issue 7, pp. 401–410.

    Article  Google Scholar 

  22. Kostin, V.N. and Vasilenko, O.N., RF Patent RU 2483301 C1, MPK7 G01N27/72 (2006.01), Byull. Izobret., 2013, no. 15.

    Google Scholar 

  23. Gallagher, R.H., Metod konechnykh elementov. Osnovy (Finite Element Analysis. Fundamentals), Moscow: Mir, 1984.

    Google Scholar 

  24. Parallel calculations at the Ural Branch, Russian Academy of Sciences. Launching programs from the ANSYS. URL package: http://www.parallel.uran.r./node/264.

  25. Reutov, Yu.Ya. and Loskutov, V.E., Topography of the field of a slot upon nonlinear magnetization, Russ. J. Nondestr. Test., 2004, vol. 40,Issue 10, pp. 696–701.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kostin.

Additional information

Original Russian Text © O.N. Vasilenko, V.N. Kostin, 2013, published in Defektoskopiya, 2013, Vol. 49, No. 9, pp. 23–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilenko, O.N., Kostin, V.N. The topography of the field and flux inside and above the surfaces of ferromagnetic plates during their contact and contactless magnetization. Russ J Nondestruct Test 49, 510–518 (2013). https://doi.org/10.1134/S1061830913090106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830913090106

Keywords

Navigation