Skip to main content
Log in

The effect of a gap between the poles of an attachable electromagnet and a tested component on coercimeter readings and methods for decreasing it (Review)

  • Magnetic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The main drawback of a coercimeter with attachable electromagnets (AEM) is its sensitivity to a random gap between electromagnet poles and a tested article formed in the process of inspection. The causes of such sensitivity are analyzed and the methods for decreasing it are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikheev, M.N., A Magnetic Method for Testing Hardness and Microstructure of Steel Pipes, Zavod. Lab., 1938, no. 10, p. 1155.

  2. Mikheev, M.N., Universal’nyi perenosnyi koertsitimetr dlya kontrolya termicheskoi obrabotki stal’nykh izdelii. Trudy instituta metallovedeniya, metallurgii i metallofiziki AN SSSR (Universal Portable Coercimeter for Testing Thermal Processing of Steel Articles. Proc. of the Institute of Metal Studies, Metallurgy, and Metal Physics, USSR Academy of Sciences), Sverdlovsk: UFAN SSSR, 1941.

    Google Scholar 

  3. Mikheev, M.N., A Manetic Method for Testing Thermal Processing of Tractor Components, Vestn. Metalloprom., 1940, nos. 8–9, pp. 87–89.

  4. Mikheev, M.N., An Automated Coercimeter for Testing the Quality of Thermal and Thermal-Chemical Processing of Steel Articles, Zavod. Lab., 1949, no. 2, pp. 173–176.

  5. Nifontov, A.V., Magnetic Testing of Thermal Processing, Zavod. Lab., 1935, vol. 4, no. 8, pp. 924–930.

    Google Scholar 

  6. Nifontov, A.V., Electromagnetic and Thermoelectric Testing Methods, Podshipnik, 1937, no. 3, pp. 26–29.

  7. Mikheev, M.N., Selection of Optimal Geometric Dimensions of Attachable Electromagnets of the Coercimeter Designed for Testing the Quality of Thermal and Chemical-Thermal Processing of Steel and Cast Iron Articles, Fiz. Met. Metalloved., 1957, vol. 5, no. 1, pp. 44–52.

    Google Scholar 

  8. Mikheev, M.N., Morozova, M.N., Neizvestnov, B.M., and Surin, G.V., Coercimeters with Attachable Electromagnets, Defektoskopiya, 1969, no. 2, pp. 131–133.

  9. Mikheev, M.N., Neizvestnov, B.M., Frantsevich, V.M., and Surin, G.V., A Device for Automated Testing of Thermal Processing, Defektoskoiiya, 1965, no. 2, pp. 89–90.

  10. Bida, G.V., Mikheev, M.N., and Neizvestnov, B.M., A Device for Testing the Quality of Thermal and Thermal-Chemical Processing of Steel and Cast Iron Articles Based on Residual Magnetization, Defektoskopiya, 1974, no. 6, pp. 103–104.

  11. Bida, G.V. and Mikheev, M.N., A Coercimeter with a Portable Indication System, Defektoskopiya, 1976, no. 5, pp. 118–119.

  12. Bida, G.V., Mikheev, M.N., and Surin, G.V., USSR Inventor’s Certificate no. 855572, Byull. Izobret., 1981, no. 30.

  13. Bida, G.V. and Bida, V.G., Coercimeters with Self-Contained Power Supply, Defektoskopiya, 1999, no. 6, pp. 36–44.

  14. Shanaurin, A.M., Veksler, A.Z., Nichipuruk, A.P., et al., SM-401 Structuroscope, Defektoskopiya, 2002, no. 6, pp. 41–48 [Russ. J. Nondestr. Test. (Engl. Transl.), 2002, vol. 38, no. 6, pp. 431–437].

  15. Nichipuruk, A.P., Bida, G.V., Shanaurin, A.M., and Stashkov, A.N., Functional Possibilities of CM-401 Magnetic Structuroscope, Defektoskopiya, 2003, no. 1, pp. 3–12 [Russ. J. Nondestr. Test. (Engl. Transl.), 2003, vol. 38, no. 1, pp. 1–9].

  16. El’gard, A.M., An Automated Coercimeter with a Flux Gate for Testing the Quality of Thermal Processing of Steel Components, Zavod. Lab., 1959, vol. 25, no. 10, pp. 1256–1258.

    Google Scholar 

  17. Mikheev, A.M., Magnetic Properties of Cement and Nitrided Steels, Zh. Tekh. Fiz., 1945, vol. 15, no. 9, pp. 672–680.

    CAS  Google Scholar 

  18. Mikheev, M.N., Magnetic Testing of the Quality of Thermal and Thermal-Chemical Processing of Steel Articles Using a Coercimeter with Attachable Electromagnetic, Tr. Inst. Fiz. Met. UFAN SSSR, 1949, no. 12, pp. 157–191.

  19. Mikheev, M.N., Magnetic Testing of the Depth of the Decarbonized and Quenched Surface Layers in Steel Articles, Proc. of the Third Int. Conf. on Nondestructive Testing, Tokyo & Osaca-March, 1960, pp. 713–719.

  20. Mikheev, M.N., Morozova, V.M., Morozov, A.P., et al., Coercimetric Methods for Testing the Quality of Thermal and Chemical-Thermal Processing of Steel and Cast Iron Articles, Tr. Inst. Fiz. Met. Ural’sk. Nauchn. Tsentr AN SSSR, 1979, no. 37, pp. 30–37.

  21. Mikheev, M.N., Bida, G.V., Kostin, V.N., et al., Testing of the Depth and Hardness of Layers on Crankshaft Journals Hardened after Heating with RF Current, Defektoskopiya, 1985, no. 8, pp. 12–17.

  22. Bida, G.V. and Nichipuruk, A.P., Coercimetry in Nondestructive Testing, Defektoskopiya, 2000, no. 10, pp. 3–28.

  23. Morozova, V.M., Mikheev, M.N., Surin, G.V., and Pomortseva, L.V., Magnetic Testing of the Depth and Hardness of a Cemented Layer of Chisel Components Defektoskopiya, 1969, no. 1, pp. 29–32.

  24. Mikheev, M.N., Neizvestnov, B.M., Turchinskii, I.I., et al., Magnetic Testing of the Depth and Hardness of a Cemented Layer of Moldboards, Trudy IFM AN SSSR. Magnitnye metody defektoskopii, analiza i izmerenii (Proc. of Inst. of Metal Physics, Acad. of Sci. of the USSR. Magnetic Methods for Flaw Detection, Analysis, and Measurements), 1959, no. 21, pp. 199–201.

  25. Kuznetsov, I.A., Application of Coercimeters for Testing the Thickness of a Hardened Surface Layer, Defektoskopiya, 1979, no. 2, pp. 2–58.

  26. Kuznetsov, I.A. and Mikheev, M.N., Testing of Hardness of Tractor Backup Rolls Made of Steel 45 Using a Semi-Automated Coercimeter,in Fizika magnitnykh yavlenii (Physics of Magnetic Phenomena), Sverdlosk: UrGU, 1964, pp. 166–173.

    Google Scholar 

  27. Mikheev, M.N., Gorkunov, E.S., and Vostrotina, T.I., Testing of the Quality of Thermal Processing of Articles Hardened Using RF Currents, Defektoskoiiya, 1976, no. 1, pp. 66–70.

  28. Mikheev, M.N., Bida, G.V., Rigmant, M.B., et al., Magnetic Testing of the Quality of Surface Hardening of the Teeth of Large-Size Gear Wheels, Defektoskopiya, 1982, no. 2, pp. 16–19.

  29. Mikheev, M.N., Morozova, V.M., Tomilov, G.S., et al., Magnetic Testing of the Depth of an Active Hardened Layer of Cold Rolling Rolls, Zavod. Lab., 1956, vol. 22, no. 1, pp. 52–54.

    Google Scholar 

  30. Mikheev, M.N., Morozova, V.M., Surin, G.V., and Bochenkov, V.S., Determination of the Depth of an Active Hardened Layer and the Amount of Residual Austenite in the Surface Layer of Cold Rolling Rolls, Zavod. Lab., 1963, no. 12, pp. 1459–1460.

  31. Mikheev, M.N., Morozova, V.M., Tomilov, G.S., et al., Magnetic Testing of the Depth of the Active Hardened Layer of Cold Rolling Rolls, Trudy IFM AN SSSR. Magnitnye Metody Defektoskopii, Analiza i Izmerenii, 1959, no. 21, pp. 157–170.

  32. Mikheev M.N., Morozova V.M., Sachavskii A.F., et al., Magnetic Testing of the Depth of the Active Hardened Layer of Cold Rolling Rolls Hardened with Industrial Frequency Currents, Trudy IFM AN SSSR. Magnitnye Metody Defektoskopii, Analiza i Izmerenii, 1959, no. 21, pp. 171–180.

  33. Mikheev, M.N., Morozova, V.M., Bochenkov, V.S., et al., Magnetic Testing of the Quality of Thermal Processing of Rolls for Cold-Rolling Mills, Defektoskopiya, 1969, no. 4, pp. 123–131.

  34. Shif, I.M. and Neizvestnov, B.M., Magnetic Testing of Strengthening of the Surface Plastically Deformed Layer of Steel Components, Defektoskoiiya, 1965, no. 6, pp. 27–35.

  35. Kokhman, L.V. and Mikheev, M.N., Electromagnetic Testing of Mechanical Properties of Pipes from Carbonized Steels, Defektoskopiya, 1969, no. 5, pp. 91–96.

  36. Timoshenko, N.N., Development and Implementation of the Methods of Nondestructive Quality Control, Stal’, 1974, no. 6, pp. 542–544.

  37. Aronson, E.V., Bida, G.V., Kamardin, V.M., et al., Magnetic Testing of Mechanical Properties of Plate Rolled Stock, Defektoskopiya, 1977, no. 2, pp. 121–124.

  38. Aronson, E.V., Bida, G.V., Kmardin, V.M., and Mikheev, M.N., Magnetic Testing of Mechanical Properties of Heavy Section Rolled Stock, Defektoskopiya, 1977, no. 2, pp. 125–127.

  39. Tsar’kova, T.P., Pochuev, N.D., and Bida, G.V., Magnitnyi kontrol’ mekhanicheskikh svoistv kotel’nykh trub. V sb.: Sovremennye metody nerazrushayushchego kontrolya i voprosy ego metrologicheskogo obespecheniya (Magnetic Testing pf Mechanical Properties of Boiler Pipes. In: Modern Methods of Nondestructive Testing and Problems of Its Metrological Provision), Sverdlovsk: IFM UNTs AN SSSR, 1980, pp. 15–16.

    Google Scholar 

  40. Bida, G.V., Nondestructive Testing of Mechanical Properties of Rolled Steel (Review): 2. Testing of Ductile Properties, Defektoskopiya, 2005, no. 5, pp. 39–76 [Russ. J. Nondestr. Test. (Engl. Transl.), 2005, vol. 41, no. 5, pp. 307–323].

  41. Vlasenko, V.P., Naugol’nov, Yu.A., and Slastinin, S.B., An Automated Flux Gate Coercimeter Φϰ-10M, Defektoskopiya, 1974, no. 3, pp. 131–134.

  42. Borisov, V.V., Kornilko, A.N., Malets, V.G., et al., An Automated Flux Gate Device for Testing the Quality of Thermal Processing, VIII Vsesoyuznaya nauchno-tekhnicheskaya konferentsiya po nerazrushayushchim fizicheskim metodam i sredstvam kontrolya (Proc. of the VIII All-Union Scientific-Engineering Conf. on Nondestructive Physical Testing Methods and Means), Kishinev, 1977, pp. 206–208.

  43. Nuriev, F.N., USSR Inventor’s Certificate no. 789940, 1980.

  44. Yanus, R.I., The Theory of Inductive Sensors with Ferrosaturated Cores for Coercimeters, Trudy IFM AN SSSR, 1954, no. 15, pp. 76–89.

  45. Yanus, R.I., Fridman, L.A., and Drozhzhina, V.I., Sensitivity of Flux Gate Coercimeters, Fiz. Met. Metalloved., 1955, vol. 1, no. 1, pp. 118–123.

    Google Scholar 

  46. Zakharov, V.A., Mikheev, M.N., Tabachnik, V.P., et al., The Effect of Variability of the Gap Between the Article and Electromagnet Pieces on Demagnetizing Current, Defektoskopiya, 1970, no. 4, pp. 91–100.

  47. Zakharov, V.A., Mikheev, M.N., and Frantsevich, V.M., The Methods for Decreasing a Gap Between an Article and Electromagnet Pieces on Demagnetizing Current of a Flux Gate Coercimeter with an Attachable Electromagnet, Defektoskopiya, 1970, no. 4, pp. 100–106.

  48. Zakharov, V.A., Mikheev, M.N., and Frantsevich, V.M., A Flux Gate Coercimeter with an Attachable Magnet and a Compensating Winding, Defektoskopiya, 1970, no. 5, pp. 88–95.

  49. Bida, G.V., Mikheev, M.N., and Surin, G.V., USSR Inventor’s Certificate no. 855572, Byull. Izobret., 1981, no. 30.

  50. Bida, G.V., Mikheev, M.N., Surin, G.V., and Pochuev, N.D., Coercimeter Identification, Defektoskopiya, 1981, no. 11, pp. 90–95.

  51. Tabachnik, V.P., Fridman, L.A., and Chernova, G.S., Application of Mouthpieces in Attachable Electromagnetic Flux Gate Coercimeters, Defektoskopiya, 1976, no. 1, pp. 92–98.

  52. Tabachnik, V.P., Fridman, L.A., Chernova, G.S., et al., Investigation of a КХФМ-1 Flux Gate Coercimeter with Different Mouthpieces for Pipe Inspection, Defektoskopiya, 1977, no. 1, pp. 41–48.

  53. Gorkunov, E.S. and Tabachnik, V.P., Study of Arrangement Efficiency of Hall Sensors of an Attachable Magnetic Instrument Used for Recording the Coercive Force of a Local Area of an Article, Defektoskopiya, 2008, no. 6, pp. 3–8 [Russ. J. Nondestr. Test. (Engl. Transl.), 2008, vol. 44, no. 6, pp. 375–379].

  54. Ul’yanov, A.I., Zakharov, V.A., Merzlyakov, E.F., and Voronov, S.A., RF Patent 2035745, Byull. Izobret., 1991, no. 14.

  55. Bida, G.V. and Sazhina, E.Yu., Optimization of Functional Parameters of Attachable Electromagnets, Defektoskopiya, 1996, no. 5, pp. 92–99.

  56. Bida, G.V., Gorkunov, E.S., and Shevnin, V.M., Magnitnyi kontrol’ mekhanicheskikh svoistv prokata (Magnetic Testing of Mechanical Properties of Rolled Stock), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2002.

    Google Scholar 

  57. Gorkunov, E.S. and Tsar’kova, T.P., Use of the Principle of Hysteresis-Free Magnetization in Coercimeters with Attachable Magnetic Devices, Defektoskopiya, 1996, no. 10, pp. 40–50.

  58. Filippov, A.V. and Voronov, S.A., The Method of Decreasing the Effect of Gaps in Devices with Attachable Magnetic Arrangements, Defektoskopiya, 1991, no. 3, pp. 44–52.

  59. Filippov, A.V., Gorkunov, E.S., Zakharov, V.A., and Chulkova, A.A., The Method for Determining a Gap during Testing of Articles Using an Attachable Magnetic Device, Defektoskopiya, 1989, no. 7, pp. 63–68.

  60. Tabachnik, V.P., The Effect of Gaps on Coercimeter Readings, Defektoskopiya, 1990, no. 2, pp. 42–52.

  61. Nichipuruk, A.P., Bida, G.V., Tsar’kova, T.P., et al., Decreasing of a Gap Effect on Coercimetry Results when Taking the Properties of an Attachable Converter into Account, Defektoskopiya, 2010, no. 8, pp. 45–53.

  62. Fridman, L.A., Frantsevich, V.M., and Tabachnik, V.P., Operation of a Ferrosensor in an Attachable Coercimeter, Defektoskopiya, 1967, no. 1, pp. 71–77.

  63. Bida, G.V. and Mikheev, M.N., Calculations for a Coercimeter with a Cylindrical Attachable Magnet, Defektoskopiya, 1977, no. 3, pp. 96–101.

  64. Bida, G.V. and Nichipuruk, A.P., Magnitnye svoistva termoobrabotannykh stalei (Magnetic Properties of Thermally Processed Steels), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2005.

    Google Scholar 

  65. Bida, G.V., The Depth of Magnetization of Massive Articles by an Attachable Electromagnet and the Depth of Testing of Functional Properties, Defektoskopiya, 1999, no. 9, pp. 70–81.

  66. Arkad’ev, V.K., Elektromagnitnye protsessy v metallakh (Electromagnetic Processes in Metals), Moscow, Leningrad: ONTI, 1934, vol. 1.

    Google Scholar 

  67. Bida, G.V., Mikheev, M.N., and Kamardin, V.M., A Decrease in the Effect of a Gap between the Poles of an Attachable Electromagnet and Articles during Nondestructive Testing of Their Properties, Defektoskopiya, 1984, no. 2, pp. 26–31.

  68. Bida, G.V., Komardin, V.M., and Tartachnaya, M.V., Investigation of the Possibilities of Nondestructive Magnetic Testing of Mechanical Properties of Thermally Strengthened Rails, Tekhn. Diagn. Neraz. Kontrol’, 1993, no. 4, pp. 42–46.

  69. Ponomarev, Yu.F., The Dependence of the Gain of Differential Flux Gates with Longitudinal Excitation on the Measured Field, Defektoskopiya, 1972, no. 2, pp. 50–62.

  70. Bida, G.V. and Kostin, V.N., Magnetic Structuroscope MC-2, Defektoskopiya, 1989, no. 2, pp. 21–24.

  71. Kostin, V.N. and Bida, G.V., Pribor dlya kontrolya struktury i mekhanicheskikh svoistv stal’nykh izdelii. Fundamental’nye nauki-narodnomu khozyaistvu (A Device for Testing the Structure and Mechanical Properties of Steel Articles), Moscow: Nauka, 1990, p. 585.

    Google Scholar 

  72. Morozova, V.M. and Nichipuruk, A.P., Magnetic Testing of Hardness of Steel Fasteners Blanks, Defektoskopiya, 1982, no. 5, pp. 81–83.

  73. Bida, G.V., Mikheev, M.N., and Neizvestnov, B.M., A Device for Testing the Quality of Thermal and Chemical-Thermal Processing of Steel and Cast Iron Articles Based on Residual Magnetization, Defektoskopiya, 1973, no. 6, pp. 103–104.

  74. Bida, G.V., Designing of a Coercimeter with Internal Negative Feedback, Defektoskopiya, 1974, no. 5, pp. 114–121.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.V. Bida, 2010, published in Defektoskopiya, 2010, Vol. 46, No. 11, pp. 62–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bida, G.V. The effect of a gap between the poles of an attachable electromagnet and a tested component on coercimeter readings and methods for decreasing it (Review). Russ J Nondestruct Test 46, 836–853 (2010). https://doi.org/10.1134/S1061830910110070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830910110070

Keywords

Navigation