Skip to main content
Log in

Application of statistical approaches to estimating the degree of material degradation

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Statistical approaches to evaluation of the degree of material degradation and determination of spatiotemporal parameters are considered. Methods that are based on statistical processing of the results of multiple measurements of metal hardness provide an integral estimate of the degree of material degradation at a certain instant. The acousto-electronic approach does not make it possible to estimate the degree of degradation in the material bulk (e.g., over pipeline thickness). A method based on a statistical analysis of tomographic images of the spatial distribution of the scattering ability in the material bulk during sounding with ultrasonic waves allows estimation of the degree of degradation in the material bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulikova, N.V., Khmelevskaya, V.S., and Bondarenko, V.V., Evolution of Dissipative Structures in an Irradiated Solid, Nelineinyi Mir, 2009, vol. 7, no. 4, pp. 301–311.

    Google Scholar 

  2. Khmelevskaya, V.S., Self-Organization Processes in a Solid, Sorosovskii Obraz. Zh., 2000, vol. 6, no. 6, pp. 85–91.

    Google Scholar 

  3. Klimontovich, Yu.L., Criteria of a Relative Degree of Ordering in Open Systems, Usp. Fiz. Nauk, 1996, vol. 166, no. 11, pp. 1231–1243.

    Article  Google Scholar 

  4. Kozinkina, A.I., Rybakova, L.M., and Berezin, A.V., Estimation of the Degree of Microdegradations during Deformation of Metal Materials, Zavod. Lab., 2006, vol. 72, no. 4, pp. 39–42.

    CAS  Google Scholar 

  5. Zuev, L.B., Tsellermaer, V.Ya., Gromov, V.E., and Murav’ev, V.V., Ultrasonic Inspection of Accumulation of Fatigue Fractures and Regeneration of Component Lifetime, Zh. Tekh. Fiz., 1997, vol. 67, no. 9, pp. 123–125.

    CAS  Google Scholar 

  6. Barsukov, V.L., Belyaev, A.A., and Serebrennikov, V.S., Vestniki bedy (o poiske sredstv geokhimicheskogo prognoza zemletryasenii) (Heralds of Disaster (Search for Ways of Geochemical Forecasting of Earthquakes)), Moscow: Nauka, 1989.

    Google Scholar 

  7. Shtremel’, M.A., Fracturing, Sorosovskii Obraz. Zh., 1997, no. 4, pp. 91–98.

  8. Panin, V.E., Modern Problems of Plasticity and Strength of Solids, Izv. Vysh. Ucheb. Zav., Fiz., 1998, no. 1, pp. 7–34.

  9. Panin, V.E., Egorushkin, V.E., Panin, A.V., and Moiseenko, D.D., Nature of Plastic Deformation Localization in Solids, Zh. Tekh. Fiz., 2007, vol. 77, issue 8, pp. 62–69.

    Google Scholar 

  10. Bobyr’, N.I., Babenko, A.E., and Khalimon, A.P., Continuum Mechanics of Fracturing and Its Application in Problems of Complex Low-Cycle Loading, TDNK, 2008, no. 4, pp. 25–34.

  11. Tsirul’nik, O.T., Estimation of Material Degradation as a Characteristic of the Technical State of Construction Materials during Operation, TDNK, 2009, no. 2, pp. 36–41.

  12. Nedoseka, S.A. and Nedoseka, A.Ya., Complex Estimation of Fractures and Residual Lifetime of Metals with an Operational Run, TDNK, 2010, no. 1, pp. 9–16.

  13. Fracturing during Cyclic Loading, Mekhan. SSSR, (httr://mehaniska.ru/346).

  14. Aleksandrov, A.P. and Zhurkov, S.N., Yavlenie khrupkogo razryva (Phenomenon of Brittle Rupture), Moscow: Gostekhizdat, 1933.

    Google Scholar 

  15. Weibull, W., A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 1951, vol. 18, no. 3, pp. 293–297.

    Google Scholar 

  16. Vitvitskii, P.M. and Popina, S.Yu., Prochnost’ i kriterii khrupkogo razrusheniya stokhasticheski defektnykh tel (Strength and Criteria of Brittle Fracturing of Stochastically Defective Bodies), Kiev: “Naukova dumka,” 1980.

    Google Scholar 

  17. Vagapov, R.D., Veroyatnostno-deterministskaya mekhanika ustalosti (Probabilistic-Deterministic Mechanics of Fatigue), Moscow: Nauka, 2003.

    Google Scholar 

  18. Kolmogorov, A.N., A Logarithmically Normal Law of Particle Size Distribution during Crashing, Dokl. AN SSSR, 1941, vol. 31,issue 2, pp. 99–101.

    Google Scholar 

  19. Botvina, L.R., Razrushenie: kinetika, mekhanizmy, obshchie zakonomernosti (Fracturing: Kinetics, Mechanisms, General Laws), Moscow: Nauka, 2008.

    Google Scholar 

  20. Malkin, A.I., Kulikov-Kostyushko, F.A., and Shumikhin, T.A., Statistical Kinetics of Quasi-brittle Fracturing, Zh. Tekh. Fiz., 2008, vol. 78,issue 3, pp. 48–56.

    Google Scholar 

  21. Lebedev, A.A., New Characteristics of Material Degradation at the Stage of Scattered Fracture Development, TDNK, 2008, no. 4, pp. 35–44.

  22. Lebedev, A. O., Muzika, M. R., and Volchek, N. L., Ukrainian Patent 52107A, 2003.

  23. Kosenkov, I.V., Method and Device for Estimating the Technical State of Structures during Acoustoemission Testing, Izv.Vyshy. Ucheb. Zav., Radioelektron., 2007, no. 9, pp. 63–69.

  24. Builo, S.I., A Method for Identifying Deformation and Destruction Stages by Location of Critical Points of a Reconstructed Flow of Acoustic-Emission Events, Defektoskopiya, 2008, no. 8, pp. 3–14 [Rus. J. Nondestr. Test. (Engl. Transl.), 2008, v. 44, no. 8, pp. 517–526].

  25. RF Patent 44165, Byull. Izobret., 2009, no.18.

  26. Truell, R., El’baum, Ch., and Chik, B., Ul’trazvukovye metody v fizike tverdogo tela (Ultrasonic Methods in Solid State Physics), Moscow: Mir, 1972.

    Google Scholar 

  27. Kak, A.C. and Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press, 1988.

  28. Koshovii, V.V., Shama, M.A., Romanishin, I.M., et al., Development of Ultrasonic Tomography Methods Based on Recording of Scattered Signals for Testing Cylindrical Articles, Metallofiz. Nov.Tekhnol., 2008, vol. 30, pp. 677–687.

    CAS  Google Scholar 

  29. Akusticheskie metody kontrolya (Acoustic Methods of Inspection), Sukhorukov, V.V., Ed., Moscow: Vysshaya shkola, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Romanishin.

Additional information

Original Russian Text © I.M. Romanishin, 2010, published in Defektoskopiya, 2010, Vol. 46, No. 8, pp. 36–44.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanishin, I.M. Application of statistical approaches to estimating the degree of material degradation. Russ J Nondestruct Test 46, 573–579 (2010). https://doi.org/10.1134/S1061830910080048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830910080048

Keywords

Navigation