Skip to main content
Log in

Modeling of ultrasonic waves by the finite-difference method in the time domain: A two-dimensional problem: Optimal algorithms, analysis of errors, and absorbing ranges near the grid boundaries

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Different variants of the finite-difference time-domain method are discussed. The velocity-stress tensor algorithm is considered using high-order finite-difference schemes. Analysis of errors is carried out with computational experiments. A technique for separating longitudinal and transverse waves in the results of calculation is proposed that makes it possible to map images in different colors. Questions of how to create absorbing regions near the grid boundaries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madariaga, R., Dynamic of an Expanding Circular Fault, Bull. Seismol. Soc. Am., 1976, vol. 66, no. 3, pp. 639–666.

    Google Scholar 

  2. Virieux, J., SH-Wave Propagation in Heterogeneous Media: Velocity-Stress Difference Method, Geophysics, 1984, vol. 49, no. 11, pp. 1933–1942.

    Article  ADS  Google Scholar 

  3. Virieux, J., P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite Difference Method, Geophysics, 1986, vol. 51, no. 4, pp. 889–901.

    Article  ADS  Google Scholar 

  4. Maloney, J.G. and Cummings, K.E., Adaptation of FDTD Techniques to Acoustic Modeling, 11th Annual Review of Progress in Applied Computational Electromagnetics, 1995, Monterey, vol. 2, pp. 724–731.

    Google Scholar 

  5. Schubert, F., Numerical Time-Domain Modeling of Linear and Nonlinear Ultrasonic Wave Propagation Using Finite Integration Techniques. Theory and Applications, J. Ultrasonics, 2004, no. 42, pp. 221–229.

  6. Gohen, G. and Fauqueux, S., Mixed Finite Elements with Mass-Lumping for the Transient Wave Equation, J. Comput. Acoust, 2000, no. 8, pp. 171–188.

  7. Graves, R.W., Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-Grid Finite Differences, Bull. Seismol. Soc. Amer., 1996, vol. 86, pp. 1091–1106.

    MathSciNet  Google Scholar 

  8. Yuan, X., Borup, D., Wiskin, J.W., Berggren, M., and Johnson, S., Simulation of Acoustic Wave Propagation in Dispersive Media with Relaxation Losses by Using FDTD Method with PML Adsorbing Boundary Conditions, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1999, vol. 46, pp. 14–23.

    Article  PubMed  CAS  Google Scholar 

  9. Saenger, E.H., Gold, N., and Shapiro, S.A., Modeling the Propagation of Elastic Waves Using a Modified Finite-Difference Grid, Wave Motion, 2000, vol. 31, no. 1, pp. 77–92.

    Article  MATH  MathSciNet  Google Scholar 

  10. Zeng, Y.Q. and Liu, Q.H., A Staggered-Grid Finite-Difference Method with Perfectly Matched Layers for Poroelastic Wave Equations, J. Acoust. Soc. Am., 2001, vol. 109, no. 6, pp. 2571–2580.

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Barkhatov, V.A., Solution of Dynamic Problems of Acoustics by the Finite-Difference Method in the Time Domain: Basic Relationships and Analysis of Errors, Defektoskopiya, 2005, no. 3, pp. 12–26 [Russ. J. Nondestruct. Test. (Engl. Transl.), vol. 41, no. 3, pp. 142–153].

  12. Barkhatov, V.A., Solving Wave Equations by the Finite-Difference Time-Domain Method: Basic Relationships for a Two-Dimensional Problem, Defektoskopiya, 2007, no. 9, pp. 54–70 [Russ. J. Nondestruct. Test. (Engl. Transl.), vol. 43, no. 9, pp. 605–618].

  13. Turchak, L.I., Osnovy chislennykh metodov (Fundamentals of Numerical Methods), Moscow: Nauka, 1987.

    MATH  Google Scholar 

  14. Cohen, G. and Joly P., Fourth Order Schemes for the Heterogeneous Acoustics Equation, Comp. Meth. Appl. Mech. Eng., 1990, no. 80, pp. 397–407.

  15. Wu, Y. and McMechan, G., Wave Extrapolation in the Spatial Wavelet Domain with Application to Postack Reverse-Time Migration, Geophysics, 1998, no. 63, pp. 589–600.

  16. Levander, A.R., Fourth-Order Finite-Difference, P-SV Seismograms, Geophysics, 1988, no. 53, pp. 1425–1436.

  17. Operto, S., Virieux, J., Hustedt, B., and Malfanti, F., Adaptive Wavelet-Based Finite-Difference Modeling of SH-Wave Propagation, Geophys. J. Int., 2002, no. 148, pp. 1–28.

  18. Hesthaven, J. and Warburton, T., Nodal High-Order Methods on Unstructured Grids: Time-Domain Solution of Maxwell’s Equations, J. Comput. Phys., 2002, nos. 181–186, p. 221.

  19. Hirono T., Lui W.W., Yokoyama., and Seki S., Stability and Numerical Dispersion of Symplectic Fourth-Order Time-Domain Schemes for Optical Field Simulation, J. Lightwave Tech., 1998, vol. 16, no. 10, pp. 1915–1920.

    Article  ADS  Google Scholar 

  20. Schroder, C.T. and Scott, W.R., On the Stability of the FDTD Algorithm for Elastic Media at a Material Interface, IEEE Trans. Geo. Remote Sens., 2002, vol. 40, pp. 474–481.

    Article  ADS  Google Scholar 

  21. Lines, L.R., Slawinski, R., and Bording, R.P., A Recipe for Stability of Finite-Difference Wave Equation Computations, Geophysics, 1999, no. 64, pp. 967–969.

  22. Sato, M., Takahata, Y., Tahara, M., and Sakagami, I., Expression of Acoustic Fields in Solids by Scalar and Vector Velocity Potentials, IEEE Int. Ultrasonic Symp. Proc., 2001.

  23. Sato, M., Takahata, Y., Tahara, M., and Sakagami, I., Expression of Contour Vibration Modes of a Square Plate by Scalar and Vector Potentials, Acoust. Sci. Tech., 2002, vol. 23, pp. 346–349.

    Article  Google Scholar 

  24. Mur, G., Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equations, IEEE Trans. Electromagnetic Compatibility, 1981, vol. 23, pp. 377–382.

    Article  Google Scholar 

  25. Highdon, R.L., Absorbing Boundary Conditions for Time-Difference Approximation to the Multidimensional Wave Equation, Math.Comp., 1986, vol. 47, pp. 437–459.

    Article  MathSciNet  Google Scholar 

  26. Highdon, R.L., Numerical Absorbing Boundary Conditions for the Wave Equation, Math. Comput., 1987, vol. 49, pp. 65–90.

    Article  Google Scholar 

  27. Givoli, D., Non-Reflecting Boundary Conditions: A Review, J. Comp. Phys., 1991, vol. 94, pp. 1–29.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Yuan, X., Borup, D., Wiskin, J.W., et al., Formulation and Validation of Berenger’s PML Absorbing Boundary for the FDTD Simulation of Acoustic Scattering, IEEE Trans. Ultrason., Ferroelect., Freq. Cont., 1997, vol. 44, pp. 816–822.

    Article  Google Scholar 

  29. Hastings, F.D., Schneider, J.B., and Broschat, S.L., Application of the Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic Wave Propagation, J. Acous. Soc. Amer. Nov., 1996, vol. 100, pp. 3061–3068.

    Article  ADS  Google Scholar 

  30. Qi, Q. and Geers, T.L., Evaluation of the Perfectly Matched Layer for Computational Acoustics, J.Comp. Physics, 1998, vol. 139, pp. 166–183.

    Article  MATH  ADS  Google Scholar 

  31. Fang, J. and Wu, Z., Generalized Perfectly Matched Layer for the Absorption of Propagating and Evanescent Waves in Lossless and Lossy Media, IEEE Trans. Microwave Theory Tech., Dec., 1996, vol. 44, pp.221–622.

    Google Scholar 

  32. Liu, Q.-H. and Tao, J., The Perfectly Matched Layer for Acoustic Waves in Absorptive Media, J. Acoust. Soc. Amer., 1997, vol. 102, pp. 2072–2082.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Barkhatov, 2009, published in Defektoskopiya, 2009, Vol. 45, No. 6, pp. 58–75.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkhatov, V.A. Modeling of ultrasonic waves by the finite-difference method in the time domain: A two-dimensional problem: Optimal algorithms, analysis of errors, and absorbing ranges near the grid boundaries. Russ J Nondestruct Test 45, 410–424 (2009). https://doi.org/10.1134/S1061830909060059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830909060059

Keywords

Navigation