Skip to main content
Log in

Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review

  • Maghetic and Electromagnetic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Experimental data on and model representations of the physical processes in small detectors operating on the basis of the magnetoimpedance effect are analyzed and generalized for conditions adapted to systems of magnetic nondestructive testing. The principles of measuring the high-frequency magnetoimpedance effect in electronic circuits including a sensitive element of a detector of weak magnetic fields are briefly described. The data on the available devices for nondestructive testing (NDT) based on the magnetoimpedance effect are systematized and examples of typical approaches are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pribory dlya nerazrushayushchego kontrolya materialov i izdelii. Spravochnik (Instruments for Nondestructive Testing of Materials and Articels: Handbook) Klyuev, V.V., Ed., Moscow: Mashinostroenie, 1986.

    Google Scholar 

  2. Sapozhnikov, A.B., Teoreticheskie osnovy elektromagnitnoi defektoskopii metallicheskikh tel (Theoretical Fundamentals of Electromagnetic Detection of Flaws in Metal Bodies), Tomsk: Tomsk Gos. Univ., 1980.

    Google Scholar 

  3. Shull, P.J., Nondestructive evaluation: Theory, Techniques and Applications. Marcel Dekker Inc., 2002.

  4. Charles, J.H., Handbook on Nondestructive Evaluation, McGraw-Hill Professional, 2001.

  5. Dorofeev, A.L. and Kazamanov, Yu.G., Elektromagnitnaya defektoskopiya (Electromagnetic Flaw Detection), Moscow: Mashinostroenie, 1980.

    Google Scholar 

  6. Mikheev, M.N. and Gorkunov, E.S., Magnitnye metody strukturnogo analiza i nerazrushayushchego kontrolya (Magnetic Methods of Structural Analysis and Nondestructive Testing), Moscow: Nauka, 1993.

    Google Scholar 

  7. Shcherbinin, V.E. and Gorkunov, E.S., Magnitnyi kontrol’ kachestva metallov (Magnetic Testing of Metal Quality), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1996.

    Google Scholar 

  8. Zatsepin, N.N. and Korzhova, L.V., Magnitnaya defektoskopiya (Magnetic Flaw Detection), Minsk: Nauka i Tekhnika, 1981.

    Google Scholar 

  9. Ferster, F., Nondestructive Testing by the Method of Stray Fields. Theoretical and Experimental Principles of Detecting Surface Flaws of Finite and Infinite Depths, Defektoskopiya, 1982, no. 11, pp. 3–11.

  10. Rempt, R., Scanning with Magnetoresistive Sensors for Subsurface Corrosion, AIP Conference Proceedings, 2002, vol. 615, pp. 1771–1778.

    Article  ADS  CAS  Google Scholar 

  11. Chen, L., Que, P.-W, and Jin, T.A., Giant-Magnetoresistance Sensor for Magnetic-Flux-Leakage Nondestructive Testing a Pipeline, Defektoskopiya, 2005, no. 7, pp. 69–73 [Russ. J. Nondestr. Test. (Engl. Transl.), 2005, vol. 41, no. 7, pp. 462–465].

  12. Uchiyama, T., Mohri, K., Panina, L.V., and Furuno, K., Magneto-Impedance in Sputtered Amorphous Films for Micro Magnetic Sensor, IEEE Trans. Magn., 1995, vol. 31, no. 6, pp. 3182–3184.

    Article  ADS  Google Scholar 

  13. Bushida, K., Mohri, K., Kanno, T., et al., Amorphous Wire MI Micro Magnetic Sensor for Gradient Field Detection, IEEE Trans. Magn., 1996, vol. 32, no. 5, pp. 4944–4946.

    Article  ADS  Google Scholar 

  14. Mohri, K., Uchiyama, T., and Panina, L.V., Recent Advances of Micro Magnetic ensors and Sensing Application, Sensors and Actuators A, 1997, vol. 59, nos. 1–3, pp. 1–8.

    Article  Google Scholar 

  15. Oka, M. and Enokizono, M., Evaluation of a Reverse-Side Defect on Stainless Steel Plates by the Residual Magnetic Field Method, IEEE Trans. Magn., 2001, vol. 37, no. 4, pp. 3073–3076.

    Article  ADS  Google Scholar 

  16. Makhotkin, V.E., Shurukhin, B.P., Lopatin, V.A., Marchukov, P.Yu., and Levin, Yu.K., Magnetic Field Sensors Based on Amorphous Ribbons, Sensors and Actuators A, 1991, vol. 27, pp. 759–762.

    Article  Google Scholar 

  17. Panina, L.V. and Mohri, K., Magneto-Impedance Effect in Amorphous Wires, Appl. Phys. Lett., 1994, vol. 65, no. 9, pp. 1189–1191.

    Article  ADS  CAS  Google Scholar 

  18. Beach, R.S. and Berkowitz, A.E., Giant Magnetic Field Dependent Impedance of Amorphous FeCoSiB Wire, Appl. Phys. Lett., 1994, vol. 64, pp. 3652–3654.

    Article  ADS  CAS  Google Scholar 

  19. Antonov, A.S., Gadetskii, S.N., Granovskii, A.B., et al., Giant Magnetic Impedance in Amorphous and Nanocrystalline Multilayers, Fiz. Met. Metalloved., 1997, vol. 83, no. 6, pp. 61–71.

    Google Scholar 

  20. Harrison, E.P., Turney, G.L., and Rowe, H., An Impedance Magnetometer, Nature, 1935, no. 135, p. 961.

  21. Harrison, E.P., Turney, G.L., Rowe, H., and Gollop, H., The Electrical Properties of High Permeability Wires Carrying Alternating Current, Proc. Roy. Soc., 1936, vol. 157, no. 819, pp. 451–479.

    ADS  Google Scholar 

  22. Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media, New York: Pergamon, 1975.

    Google Scholar 

  23. Mohri, K., Kohzawa, T., Kawashima, K., and Uchiyama, T., Magneto-Inductive Effect (MI effect) in Amorphous Wires, IEEE Trans. Magn., 1992, vol. 28, no. 5, pp. 3150–3152.

    Article  ADS  CAS  Google Scholar 

  24. http://www.aichi-mi.com

  25. Kurlyandskaya, G.V., Giant Magnetoimpedance for Sensor Applications, Encyclopedia of Sensors, Grimes, C.A., Dickey, E.C., and Pishko, M.V., Eds., American Scientific Publishers, 2006, vol. 4, pp. 205–237.

  26. Mandi, A.E., Panina, L., and Mapps, D., Some New Horizons in Magnetic Sensing: High-Tc SQUIDs, GMR and GMI Materials, Sensors and Actuators A, 2005, vol. 105, pp. 271–285.

    Google Scholar 

  27. Nuriev, F.N. and Gershkovich, S.O., Application of the Pattern Recognition Method for Nondestructive Testing of Mechanicl Properties, Defektoskopiya, 1974, no. 2, pp. 119–127.

  28. Shur, Ya.S., Zagidulin, R.V., and Shcherbinin, V.E., Theoretical Questions of the Formation of the Field of a Surface Flaw, Defektoskopiya, 1988, no. 3, pp. 14–15.

  29. Zagidulin, R.V., Muzhitskii, V.F., and Kurozaev, V.P., Resolution of Discontinuity Flaws from the Topography of a Magnetic Field, Defektoskopiya, 2000, no. 5, pp. 46–56 [Russ. J. Nondestr. Test. (Engl. Transl.), 2000, vol. 36, no. 5, pp. 344–352].

  30. Uchiyama, T., Sompob, P., Mohri, K., and Ishikawa, N., Nondestructive Evaluation for Structuring Steel Deformation Using Amorphous Wire MI Sensor, J. Magnetic Society of Japan, 1999, vol. 23, nos. 4–2, pp. 1465–1468.

    Article  CAS  Google Scholar 

  31. Uehara, M. and Nakamura, N., Scanning Magnetic Microscope System Utilizing a Magnetoimpedance Sensor for a Non-destructive Diagnostic Tool of Geological Samples, Review Scientific Instruments, 2007, vol. 78, p. 043708.

    Article  ADS  Google Scholar 

  32. Vacher, F. and Alves, F.G.P., Eddy Current Non-destructive Testing with Giant Magnetoimpedance Sensor, NDT&E International, 2007, vol. 40, pp. 439–442.

    Article  CAS  Google Scholar 

  33. http://www.itae.ru

  34. Beach, R.S., Smith, N., Platt, C.L., Jeffers, F., and Berkowitz, A.E., Magnetoimpedance Effect in NiFe Plated Wire, Appl. Phys. Lett., 1996, vol. 68, pp. 2753–2755.

    Article  ADS  CAS  Google Scholar 

  35. Cullity, B.D., Introduction to Magnetic Materials, Addison-Wesley Publishing Company, 1972, p. 667.

  36. Iida, S., Ishii, O., and Kambe, R., Magnetic Sensor Using Second Harmonic Change in Magnetoimpedance Effect, Jpn. J. Appl. Phys., 1998, vol. 37, pp. L869–L873.

    Article  ADS  CAS  Google Scholar 

  37. Antonov, A.S., Buznikov, N.A., Prokoshin, A.F., et al., Nonlinear Magnetization Reversal of Composite Copper-Permalloy Wires Induced by a High-Frequency Current, Pis’ma ZhTF, 2001, vol. 27, no. 8, pp. 12–18.

    Google Scholar 

  38. Kurlyandskaya, G.V., Yakabchuk, H., Kisker, E., et al., Very Large Magnetoimpedance Effect in FeCoNi Ferromagnetic Tubes with High Order Magnetic Anisotropy, J. Appl. Phys., 2001, vol. 90, pp. 6280–6285.

    Article  ADS  CAS  Google Scholar 

  39. Pozar, D.M., Microwave Engineering, Wiley, 2004, p. 720.

  40. Combes, P.F., Transmission en Espace Libre et sur les Lignes, Paris: Dunod Université, 1988, p. 251.

    Google Scholar 

  41. Collin, R.E., Foundations for Microwave Engineering, New York: IEEE Press, Hoboken (NJ), Wiley, 2001, p. 924.

    Google Scholar 

  42. Nguyen, C., Broadside-Coupled Coplanar Waveguide and Their End-Coupled Band-Pass Filter Application, IEEE Trans Microwave Theory Tech, 1992, vol. 40, pp. 2181–2189.

    Article  ADS  Google Scholar 

  43. Gupta, K.C., Garg, R., Bahl, I., and Bhartia, P., Microstrip Lines and Slotlines, Boston: Artech House, 1996, p. 535.

    Google Scholar 

  44. Menard, D., Britel, M., Ciureanu, P., and Yelon, A., Giant Magnetoimpedance in a Cylindrical Magnetic Conductor, J. Appl. Phys., 1998, vol. 84, no. 5, pp. 2805–2814.

    Article  ADS  CAS  Google Scholar 

  45. Garcia-Beneytez, J.M., Vinai, F., Brunetti, L., Garcia-Miquel, H., and Vazquez, M., Study of Magnetoimpedance Effect in the Microwave Frequency Range for Soft Magnetic Wires and Microwires, Sensors and Actuators A, 2000, vol. 81, pp. 78–81.

    Article  Google Scholar 

  46. Garcia-Miquel, H., Garcia, J.M., Garcia-Beneytez, J.M., and Vazquez, M., Surface Magnetic Anisotropy in Glass-Coated Amorphous Microwires as Determined from Ferromagnetic Resonance Measurements, J. Magn. Mater, 2001, vol. 231, pp. 38–44.

    Article  ADS  CAS  Google Scholar 

  47. Paramonov, V.P., Antonov, A.S., Lagarikov, A.N., Panina, L.V., and Mohri, K., High Frequency (1–1200 MHz) Magnetoimpedance in CoFeSiB Amorphous Wires, J. Appl. Phys., 1996, vol. 79, p. 6532.

    Article  ADS  CAS  Google Scholar 

  48. De Cos, D., Garcia-Arribas, A., and Barandiaran, J.M., Analysis of Magnetoimpedance Measurements at High Frequency Using a Microstrip Transmission Line, Sensors and Actuators A, 2004, vol. 115, pp. 368–375.

    Article  Google Scholar 

  49. De Cos, D., Garcia-Arribas, A., and Barandiaran, J.M., Experimental Evidence of Ferromagnetic Resonance in Magnetoimpedance Measurements, IEEE Transactions on Magnetics, 2005, vol. 41, no. 10, pp. 3649–3651.

    Article  ADS  Google Scholar 

  50. De Cos, D., Panina, L.V., Fry, N., et al., Magnetoimpedance in Narrow Ni-Fe/Au/NiFe Multilayer Film Systems, IEEE Transactions on Magnetics, 2005, vol. 41, no. 10, pp. 3697–3699.

    Article  ADS  Google Scholar 

  51. Barandiaran, J.M., Garcia-Arribas, A., and de Cos, D., Transition from Quasi-static to Ferromagnetic Resonance Regime in Giant Magnetoimpedance, J. Appl. Phys., 2006, vol. 99, p. 103904.

    Article  ADS  Google Scholar 

  52. Garcia-Arribas, A., de Cos, D., and Barandiaran, J.M., Determination of the Intrinsic High-Frequency Magnetoimpedance Spectra of Multilayer Systems, J. Appl. Phys., 2006, vol. 99, p. 08C507.

    Article  Google Scholar 

  53. Agilent Technologies: De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer, Application Notes, 2004, p. 1364.

  54. Antonov, A.S., Buznikov, N.A., Prokoshin, A.F., et al., Nonlinear Magnetization Reversal of Copper-Permalloy Composite Wire Induced by a High-Frequency Current, Pis’ma ZhTF, 2001, vol. 27, no. 8, pp.12–17.

    Google Scholar 

  55. Kurlyandskaya, G.V., Garcia-Arribas, A., and Barandiaran, J.M., Advantages of Nonlinear Giant Magnetoimpedance for Sensor Applications, Sensors and Actuators A, 2003, vol. 106, pp. 234–239.

    Article  Google Scholar 

  56. Volchkov, S.O., Dukhan, E.I., Kurlyandskaya, G.V., and Vas’kovskii, V.O., Automatic System for Measuring Giant Magnetic Impedance, Materialy 12-i Ross. nauchnoi konf. studentov fizikov (Proc. 12th Russ. Scientific Conf. Students-Physicists), Novosibirsk, 2006, p. 706.

  57. Mohri, K., Uchiyama, T., and Panina, L.V., Recent Advances of Micro Magnetic Sensors and Sensing Applications, Sensors and Actuators A, 1997, vol. 59, pp. 1–8.

    Article  Google Scholar 

  58. Alves, F. and Bensalah, A.-D., New 1D-2D Magnetic Sensors for Applied Electromagnetic Engineering, J. Mater. Process. Technol., 2007, vol. 181, pp. 194–198.

    Article  CAS  Google Scholar 

  59. Barnochnikov, M.L., Mikromagnitoelektronika (Micromagnetoelectronics), Moscow: DNK Press, 2001, vol. 1.

    Google Scholar 

  60. Fizicheskii entsiklopedicheskii slovar’ (Physical Encyclopedical Dictionary), Prokhorov A.M., Ed., Moscow: Nauchnoe Izd. Bol’shaya Rossiiskaya Entsiklopediya, 1995, p. 660.

    Google Scholar 

  61. Mohri, K., Panina, L.V., Uchiama, T., et al., Sensitive and Quick Response Micro Magnetic Sensor Utilizing Magnetoimpedance in Co-Rich Amorphous Wires, IEEE Trans. Magn., 1995, vol. 31, no. 2, pp. 1266–1275.

    Article  ADS  CAS  Google Scholar 

  62. Mohri, K., Uchiyama, T., Shen, et al., Sensitive Micro Magnetic Sensor Family Utilizing Magnetoimpedance (MI) and Stress Impedance (SI) Effects for Intelligent Measurements and Control, Sensors and Actuators A, vol. 91, pp. 85–90.

  63. Kumar, A., Mohapatra, S., Fal-Miyar, V., et al., Magnetoimpedance Biosensor for Fe3O4 Naoparticle Intracellular Uptake Evaluation, Appl. Phys. Lett., 2007, vol. 91, p. 143902.

    Article  ADS  Google Scholar 

  64. Barandiaran, J.M., Kurlyandskaya, G.V., de Cos, D., et al., Multilayer Magnetoimpedance Sensor for Nondestructive Testing, Sensor Letters, 2009, vol. 7, pp. 1–4.

    Article  Google Scholar 

  65. De Cos, D., Lepalovskiy, V.N., Kurlyandskaya, G.V., et al., High-Frequency Magnetoimopedance in Multilayer Thin Films with Longitudinal and Transverse Anisotropy, J. Magn. Mater., 2008, 320, pp. e-954–957.

    Google Scholar 

  66. De Cos, D., Barandiaran, J.M., Garcia-Arribas, A., et al., Longitudinal and Transverse Magnetoimpedance in FeNi/Cu/FeNi Multilayers with Longitudinal and Transverse Anisotropy, G.V. Digest of the Intermag Conf., 2002, p. EG07.

  67. Nishibe, Y., Yamadera, H., Ohta, et al., Thin Film Magnetic Field Sensor Utilizing Magneto Impedance Effect, Sensors and Actuators, 2000, vol. 82, pp. 155–160.

    Article  Google Scholar 

  68. Nishibe, Y., Yamadera, H., Ohta, N., et al., Magnetoimpedance Effect of a Layered CoNbZn Amorphous Film Formed on Polyamide Substrate, IEEE Trans. Magnet., 2003, vol. 39, no. 1, pp. 571–575.

    Article  ADS  CAS  Google Scholar 

  69. Uchiyama, T., Sompob, P., Mohri, K., and Ishikawa, N., Nondestructuve Evaluation for Structuring Steel Deformation Using Amorphous Wire MI Sensor, J. Magn. Soc. Jap., 1999, vol. 23, nos. 4–2, pp. 1465–1468.

    Article  CAS  Google Scholar 

  70. Metallovedenie i termicheskaya obrabotka stali (Physical Metallurgy and Thermal Treatment of Steel), Bernshtein, M.L, and Rakhshtadt, A.G., Eds., Moscow: Metallurgiya, vol. 1.

  71. Kim, D.J., Park, D.G., and Hong, J.H., Nondestructive Evaluation of Reactor Pressure Vessel Steels Using Giant Magnetoimpedance Sensor, J. Appl. Phys., 2002, vol. 91, pp. 7421–7426.

    Article  ADS  CAS  Google Scholar 

  72. Uehara, M. and Nakamura, N., Scanning Magnetic Microscope System Utilizing a Magnetoimpedance Sensor for a Nondestructive Diagnostic Tool of Geological Samples, Rev. Sci. Instrum., 2007, vol. 78, p. 043708.

    Article  PubMed  ADS  Google Scholar 

  73. Goktepe, M., Ege, Y., Bayri, N., and Atalay, S., Nondestructive Crack Detection Using GMI sensor, Phys. Stat. Solid. (c), 2004, vol. 1, no. 12, pp. 3436–3439.

    Article  CAS  Google Scholar 

  74. Kurlyandskaya, G.V., Garcia-Arribas, A., Barandiaran, J.M., and Kisker, E., Giant Magnetoimpedance Strip and Coil Sensors, Sensors and Actuators A, 2001, vol. 91, pp. 116–119.

    Article  Google Scholar 

  75. Pompeia, F., Gusmao, L.A.P., and Hall, Barbosa C.R., et al., Ring Shaped Magnetic Field Transducer Based on the GMI Effect, Meas. Sci. Technol., 2008, vol. 19, p. 025801.

    Article  Google Scholar 

  76. Vacher, F., Alves, F., and Giles-Pascaud, C., Eddy-Current Nondestructive Testing with Giant Magnetoimpedance Sensor, NDT&E International, 2007, vol. 40, pp. 439–442.

    Article  CAS  Google Scholar 

  77. Nakai, T., Takada, K., Abe, H., et al., Magnetic Field Measurement Using Step-like GMI Sensor Combined with Differential Circuit, J. Magn. Soc. Jap., 2007, vol. 31, pp. 216–220.

    Article  CAS  Google Scholar 

  78. Nakai, T., Ishiyama, K., and Yamasaki, J., Analysis of Steplike Change of Impedance for Thin-Film Giant Magnetoimpedance Element with Inclined Stripe Magnetic Domain Based on Magnetic Energy, J. Appl. Phys., 2007, vol. 101, no. 106, p. 09N106.

    Article  Google Scholar 

  79. Nishibe, Y., Ohta, N., Tsukada, et al., Sensing of Passing Vehicles Using a Lane Marker on Road with a Built-in Thin Film MI Sensor and Power Source, IEEE Transac. Vehic. Techn., 2004, vol. 53, no. 6, pp. 1827–1834.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.V. Kurlyandskaya, D. de Cos, S.O. Volchkov, 2009, published in Defektoskopiya, 2009, Vol. 45, No. 6, pp. 13–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurlyandskaya, G.V., de Cos, D. & Volchkov, S.O. Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review. Russ J Nondestruct Test 45, 377–398 (2009). https://doi.org/10.1134/S1061830909060023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830909060023

Keywords

Navigation