Skip to main content
Log in

Acoustic analogue of the curve of growth of fatigue cracks

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A theoretical substantiation of the acoustic curve of growth of fatigue cracks is presented, including the main assumptions and the dependence of the amplitude of surface acoustic wave oscillations on the number of cycles in cyclic tests. It is shown that this dependence does not qualitatively contradict the classical theory of crack growth from notches. A criterion for previous damage intended for ensuring timely replacement of a fatigue-damaged article is considered. This criterion is implemented using the backscattering (acoustic fatigue curve) and signal-oscillation methods. It is asserted that the signal-oscillation method is an active low-frequency analogue of the acoustic-emission method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busov, V.L. and Shermergor, T.D., Scattering of Ultrasonic Waves in Polycrystals under Conditions of Developed Plastic Deformation at the Fragmentation Stage, FTVD, 2002, vol. 12, no. 1, p. 60.

    CAS  Google Scholar 

  2. Busov, V.L., Absorption of Ultrasonic Waves in Plastically Strained Polycrystals, FTVD, 2005, vol. 15, no. 1, p. 112.

    CAS  Google Scholar 

  3. Busov, V.L., Scattering of Ultrasonic Waves in Plastically Strained Polycrystals, Acoust. Vestnik NANU, 2007, no. 3.

  4. Hirotsugu, O., Yoshikiyo, M., and Masahiko, H., Acoustic Study of Dislocation Rearrangement at Later Stages of Fatigue. Noncontact Prediction of Remaining Life, J. Appl. Phys., 2002, vol. 91, no. 4, p. 1849.

    Article  Google Scholar 

  5. Konovalov, S.V., Gorlova, S.N., Leikina, O.S., Sosnin, O.V., Tsellermaier, V.V., and Gromov, V.E., Dependence of the Ultrasound Propagation Velocity on the Number of Cycles in Fatigue Tests, 3-ya Vserossiiskaya nauchnotekhn. konferentsiya “Novye khim. tekhnologii: proizvodstvo i primenenie” (Third All-Russia Scientific and Technical Conf. “New Chemical Technologies: Production and Application”), Penza: Privolzh. Dom znanii, 2000, pp. 25–26.

    Google Scholar 

  6. Gretskaya, I.A., Konovalov, S.V., and Sosnin, O.V., Possibility of Plotting Fatigue Curves from the Data of Ultrasound Velocity Measurements, Izv. Vuzov. Chern. Mettalurg., 2002, no. 11, p. 77.

  7. Budenkov, G.A., Nedzvetskaya, O.V., and Bakhtin, A.V., Acoustics of Growing Cracks, Vestnik Izhevsk. gos. tekhn. Univer., 1998, no. 1, pp. 20–26; Budenkov G.A., Nedzvetskaya O.V., and Kotolomov A.Yu. Quantitative Evaluation of the Crack-Growth Process Based on the AE Phenomenon, V Mire Nerazr. Kontr., 2001, no. 2, pp. 16–19.

  8. Penkin, A.G., Tenent’ev, V.F., and Maslov, L.I., Otsenka ostatochnogo resursa rabotosposobnosti trubnykh stalei s ispol’zovaniem metodov akusticheskoi emissii i kineticheskoi tverdosti (Evaluation of the Residual Life of Tube Steels using Acoustic-Emission and Kinetic-Hardness Methods), Moscow: Interkontakt Nauka, 2005.

    Google Scholar 

  9. Bezlyudko, G.Ya., Operational Testing of the Fatigue State and Residual Life of Metalware by the Nondestructive Magnetic Coercimetric Method, Tekhn. Diagnost. Nerazr. Kontr., 2003, no. 2, p. 20.

  10. Masatoshi, K., Shinsuke, Y., Koji, Yamada., and Yoshihiro, I., Evaluation of Residual Stresses and Plastic Deformation for Iron-Based Materials by Leakage Magnetic Flux Sensors, J. Alloys Compd., 2000, vol. 314, nos. 1–2, p. 232.

    Google Scholar 

  11. Gorkunov, E.S., Khamitov, V.A., and Bartenev, O.A., Magnetoacoustic Emission in Plastically Strained Ferromagnets, Defektoskopiya, 1988, no. 9, p. 10.

  12. Mori Akira, Iwasa Sinichi, and Suzuki Kaoru, The Basic Study of the Detection of Metal Fatigue by Laser Insituted Thermal Vibration (report), Conf. on Engineering Thin Films with Ion Beam, Nanoscale Diagnostics and Molecular Manufacturing, San Diego, Calif., 2001, Proc. SPIE201, 4468, p. 171–178.

  13. Rybnik, A.A. and Ermolov, I.N., Substantiation of Optimal Methods for Ultrasonic Evaluation of the State of a Material Subject to a Cyclic Damage, Trudy TsNIITMASh, Moscow, 1981, no. 165, pp. 42–59.

  14. Rybnik, A.A., Ermolov, I.N., and Tsarev, K.K., A Setup for Ultrasonic Investigation of Stages of Metal Fatigue Development, Trudy TsNIITMASh, Moscow, 1981, no. 165, pp. 42–59.

  15. Vladimirov, V.I., Fizicheskaya priroda razrusheniya metallov (Physiacal Nature of Metal Fracture), Moscow: Metallurgiya, 1984.

    Google Scholar 

  16. Ivanova, V.S. and Terent’ev, V.F., Priroda ustalosti metallov (Nature of Metal Fatigue), Moscow: Metallurgiya, 1975, p. 48.

    Google Scholar 

  17. Pavlov, V.A., Amorphization of Metal and Alloy Structures with a Maximum Possible Degree of Strain, Fiz. Met. Metalloved., 1985, vol. 59, no. 4, p. 629.

    CAS  Google Scholar 

  18. Tutnov, A.A., Dorovskii, V.M., and Elesin, L.A., Amorphization of Crystal Materials in the Zone in Front of the Tip of a Developing Crack, in Sinergetika i ustalostnoe razrushenie metallov (Synergetics and Fatigue Fracture of Metals), Moscow: Nauka, 1989, p. 45.

    Google Scholar 

  19. Tong, Z.X. and Bailon, J.P., Fatigue and Fract. Eng. Materials and Structure, 1995, vol. 18, nos. 7–8, p. 847.

    CAS  Google Scholar 

  20. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Large Plastic Deformations and Metal Fracture), Moscow: Metallurgiya, 1986.

    Google Scholar 

  21. Viktorov, I.A., Ul’trazvukovye poverkhnostnye volny v tverdykh telakh (Ultrasonic Surface Waves in Solids), Moscow: Nauka, 1981.

    Google Scholar 

  22. Koppelmann, J. and Fay, B., Die Quantitative Auswertung Von Ultraschall Ruksstrenuungmessungen in Metallen, Acustica, 1973, vol. 29, p. 297.

    Google Scholar 

  23. Kotsan’da, S., Ustalostnoe rastreskivanie metallov (Fatigue Cracking of Metals), Moscow: Metallurgiya, 1990, p. 400.

    Google Scholar 

  24. Smith, S. and Kobayasi, A., Eksperimental’naya mekhanika razrusheniya, in Eksperimental’naya mekhanika, v 2-kh kn. (Experimental Mechanics), Kobayasi, A. Ed., Moscow: Mir, 1990, vol. 2, p. 440.

    Google Scholar 

  25. Rybin, V.V. and Zhukovskii, I.M., Disclination Microcrack Formation Mechanism, Fiz. Tverd. Tela (St. Ptersburg), 1978, vol. 20, no. 6.

  26. Ivanov, V.I. and Belov, V.M., Akustiko-emissionnyi kontrol’ svarki i svarnykh izdelii (Acoustic-Emission Testing of Welding and Welded Objects), Moscow: Mashinostroenie, 1981, p. 184.

    Google Scholar 

  27. Rybnik, A.A., Ermolov, I.N., and Zaitsev, G.Z., Ultrasonic Method for Testing Specimens in Fatigue Tests, Zavod. Lab, 1981, no. 5, p. 75.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.L. Busov, 2008, published in Defektoskopiya, 2008, Vol. 44, No. 9, pp. 64–69.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busov, V.L. Acoustic analogue of the curve of growth of fatigue cracks. Russ J Nondestruct Test 44, 634–638 (2008). https://doi.org/10.1134/S1061830908090076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830908090076

Keywords

Navigation