Skip to main content
Log in

Magnetic and electromagnetic inspection of mechanical properties of high-carbon steel with an initial fine-pearlite structure subjected to high-temperature annealing

  • Magnetic and Electromagnetic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

We study the possibilities of applying the measurements of major and minor magnetic hysteresis loops and electrical and eddy-current parameters for estimating changes in the strength and plastic characteristics of the high-carbon steel У 10 (with 1.03 wt % C) with a fine-pearlite structure during annealing at 650°C for 10–300 min. We analyze the correlations between the mechanical and physical properties of this steel with pearlite structures differing in morphology and imperfection of cementite, as well as the levels of solid-solution hardening and microdistortions of the ferrite-component lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Embury, J.D. and Ficher, R.M., The Structure and Properties of Drawn Pearlite, Acta Metall., 1966, vol. 14, no. 2, pp. 147–159.

    Article  CAS  Google Scholar 

  2. Gridnev, V.N., Gavrilyuk, V.G., and Meshkov, Yu.Ya., Prochnost’ i plastichnost’ kholodnodeformirovannoi stali (Strength and Plasticity of Cold-Shaped Steel), Kiev: Naukova Dumka, 1974.

    Google Scholar 

  3. Zubov, V.Ya., Patentirovanie i volochenie stal’noi provoloki (Patenting and Wiredrawing of Steel Wire), Moscow: Metallurgizdat, 1945.

    Google Scholar 

  4. Zolotarskii, A.F., Rauzin, Ya.R., Shur, E.A., et al., Termicheski uprochnennye rel’sy (Thermally Strengthened Rails), Moscow: Transport, 1976.

    Google Scholar 

  5. Schastlivtsev, V.M., Mirzaev, D.A., Yakovleva, I.L., Okishev, K.Yu., Tabatchikova, T.I., and Khlebnikova, Yu.V., Perlit v uglerodistykh stalyakh (Pearlite in Carbon Steel), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2006.

    Google Scholar 

  6. Zheltkov, A.S. and Filippov, V.V., Influence of the Carbon Content and Conditions of Patenting-Brass-Plating for Wire Strengthening, Stal’, 2001, no. 2, pp. 45–48.

  7. Ivanisenko, Yu.V., Baumann, G., Fekht, G., et al., Nanostructure and Hardness of a “White Layer” on the Surface of Railways, Fiz. Met. Metallogr., 1997, vol. 83, pp. 104–111 [Phys. Met. Metallogr. (Engl. Transl.), 1997, vol. 83, pp. 104–111]

    CAS  Google Scholar 

  8. Luzhnov, Yu.M. and Chichinadze, A.V., On the Causes of Extremely Gross Wear of Train Wheels and Rails of Railway Transport, Trenie Iznos, 1998, vol. 19, no. 3, pp. 344–349.

    Google Scholar 

  9. Mironenko, A.S., Why and How are Wire Cables Tested? V Mire Nerazrush. Kontrolya, 2006, vol. 2, pp. 5–7.

    Google Scholar 

  10. Khomenko, S.V. and Shpakov, I.I., Magnetic Flaw Detection of Ropes of Lifting Cranes and Other Potentially Hazardous Objects, V Mire Nerazrush. Kontrolya, 2006, vol. 2, pp. 18–21.

    Google Scholar 

  11. Engel, E.H., The Softening Rate of a Steel when Tempered from Different Initial Structures, Trans. Am. Soc. Metals, 1939, vol. 27, pp. 1–15.

    CAS  Google Scholar 

  12. Schastlivtsev, V.M., Yakovleva, I.L., and Zavarov, A.S., Effect of Tempering on the Structure and Properties of Patented Steel, Fiz. Met. Metallogr., 1980, vol. 49, no. 1, pp. 138–144.

    CAS  Google Scholar 

  13. Schastlivtsev, V.M., Yakovleva, I.L., and Mirzaev, D.A., Structural Transformations in Pearlite during Heating. I. Solid-Solution Strengthening of the Ferrite Constituent of Pearlite, Fiz. Met. Metallogr., 1994, vol. 77, no. 4, pp. 138–147.

    CAS  Google Scholar 

  14. Schastlivtsev, V.M., Tabatchikova, T.I., Makarov, A.V., et al., Effect of Ferrite Solid-Solution Strengthening and Cementite Spheroidization on the Wear Resistance of a Eutectoid Carbon Steel with a Fine-Lamellar Pearlitic Structure, Fiz. Met. Metallogr., 1999, vol. 88, pp. 94–103 [Phys. Met. Metallogr., vol. 88, pp. 87–95].

    CAS  Google Scholar 

  15. Makarov, A.V., Kogan, L.Kh., Schastlivtsev, V.M., et al., Feasibility of Testing the Hardness and Wear Resistance of Eutectoid High-Carbon Steels with a Structure of Thin-Plate Pearlite by Magnetic and Electromagnetic Methods, Defektoskopiya, 2000, no. 8, pp. 3–17 [Russ. J. Nondestruct. Test. (Engl. Transl.), no. 8, pp. 539–550].

  16. Makarov, A.V., Schastlivtsev, V.M., Gorkunov, E.S., et al., Possibilities of Nondestructive Testing of Physicomechanical Characteristics of Hypereutectoid Carbon Steels with Structures of Isothermal Austenite Decomposition, Defektoskopiya, 2002, no. 10, pp. 62–86 [Russ. J. Nondestruct. Test. (Engl. Transl.), no. 10, pp. 767–787].

  17. Makarov, A.V., Schastlivtsev, V.M., Tabatchikova, T.I., et al., Wear Resistance of Hypereutectoid Carbon Steels with Structures of Isothermally Transformed Austenite, Fiz. Met. Metallogr., 2004, vol. 97, no. 5, pp. 94–105.

    CAS  Google Scholar 

  18. Kirel’, L.A., Tsys’, O.I., Nagovitsyn, V.S., et al., Magnetic Tests of Hardness and Structure of Rail Steel, Defektoskopiya, 2000, no. 9, pp. 69–75 [Russ. J. Nondestruct. Test. (Engl. Transl.), no. 9, pp. 675–680].

  19. Tomilov, G.S. and Matveev, V.I., Magnetic Properties, Electric Conductivity, and Hardness of Rail Steel M75 after Bainitic Hardening and Following Tempering, Defektoskopiya, 1965, no. 1, pp. 72–81

  20. Bida, G.V., Kamardin, V.M., and Tartachnaya, M.V., Investigation of the Possibility of Nondestructive Magnetic Testing of Mechanical Properties of Thermally Strengthened Rails, Tekh. Diagnost. Nerazrush. Kontrol’, 1993, no. 4, pp. 42–48.

  21. Bida, G.V., Nichipuruk, A.P., Kamardin, V.M., and Stashkov, A.N., Studying the Structure and the Magnetic and Mechanical Properties of Steel M74 and the Capability of Nondestructive Testing of Heat-Treatment-Hardened Rails, Defektoskopiya, 2005, no. 6, pp. 75–89 [Russ. J. Nondetruct. Test. (Engl. Transl.), no. 6, p. 391].

  22. Mikheev, M.N. and Gorkunov, E.S., Relation of Magnetic Properties to the Structural State of a Substance as the Physical Basis of Magnetic Structural Analysis, Defektoskopiya, 1981, no. 8, pp. 3–23.

  23. Jiles, D.C., Magnetic Properties and Microstructure of AISI 1000 Series Carbon Steels, J. Phys. D: Appl. Phys., 1988, vol. 21, pp. 1186–1195.

    Article  CAS  Google Scholar 

  24. Tanner, B.K., Szpunar, J.A., Willcock, S.N.M., et al., Magnetic and Metallurgical Properties of High-Tensile Steels, J. Mat. Sci., 1988, vol. 23, pp. 4534–4540.

    Article  CAS  Google Scholar 

  25. Gorkunov, E.S., Somova, V.M., Tsar’kova, T.P., et al., Interrelations between the Coercive Force and the Chemical Composition and Microstructure of Annealed Steels, Defektoskopiya, 1997, no. 8, pp. 31–49.

  26. Gorkunov, E.S., Grachev, S.V., Smirnov, S.V., et al., Relations of Physicomechanical Properties to the Structural Condition of Severely Deformed Patented Carbon Steels Subjected to Drawing, Defektoskopiya, 2005, no. 2, pp. 3–22 [Russ. J. Nondestruct. Test. (Engl. Transl.), no. 2, pp. 65–79].

  27. Mikheev, M.N. and Gorkunov, E.S., On Possible Causes of the Difference of Magnetization-Reversal Processes in Thermally Processed of Structural Steels in Weak and Medium Magnetic Fields, Fiz. Met. Metalloved., 1981, vol. 51, no. 4, pp. 749–755.

    CAS  Google Scholar 

  28. Gorkunov, E.S., Dragoshanskii, Yu.N., and Rodionova, S.S., Effect of Steel Structures on Magnetization-Reversal Processes in Weak and Strong Magnetic Fields and Solving of Problems of Magnetic Structuroscopy of Products Made from These Steels, Defektoskopiya, 1998, no. 6, pp. 42–59.

  29. Gorkunov, E.S., Savrai, R.A., Makarov, A.V., et al., Application of Magnetic and Electromagnetic-Acoustic Methods for Assessing Plastic Deformations under Cyclic Loading of Annealed Intermediate-Carbon Steel, Defektoskopiya, 2006, no. 5, pp. 29–36 [Russ. J. Nondestruct. Test. (Engl. Transl.), no. 5, pp. 309–314].

  30. Tushinskii, L.I., Bataev, A.A., and Tikhomirova, L.B., Struktura perlita i konstruktivnaya prochnost’ stali (Structure of Pearlite and Structural Durability of Steel), Novosibirsk: Nauka, 1993.

    Google Scholar 

  31. Schastlivtsev, V.M., Yakovleva, I.L., and Mirzaev, D.A., Structural Transformations in Pearlite under Heating. III. Carbide Spheroidization. Gibbs-Thomson’s Equation and Problem of Carbide Coagulation, Fiz. Met. Metallogr., 1994, vol. 78, no. 3, pp. 104–115.

    CAS  Google Scholar 

  32. Takahashi, T. and Nagumo, M., Flow Stress and Work-Hardening of Pearlitic Steel, Trans. Jpn. Inst. Met., 1970, vol. 11, no. 2, pp. 113–119.

    CAS  Google Scholar 

  33. Gorkunov, E.S., Grachev, S.V., Smirnov, S.V., et al., Effect of Large Deformations during Drawing on the Physicomechanical Properties of Patented Steel Wire, Fiz. Met. Metallogr., 2004, vol. 98, no. 5, pp. 85–97.

    CAS  Google Scholar 

  34. Mes’kin, V.S., Osnovy legirovaniya stali (Fundamentals of Steels Alloying), Moscow: Metallurgiya, 1964.

    Google Scholar 

  35. Hyzak, J.M. and Bernstein, I.M., The Role of Microstructure on the Strength and Toughness of Fully Pearlitic Steels, Metall. Trans. A, 1976, vol. 7, no. 8, pp. 1217–1224.

    Google Scholar 

  36. Meshkov, Yu.Ya., Fizicheskie osnovy razrusheniya stal’nykh konstruktsii (Physical Fundamentals of Destruction of Steel Structures), Kiev: Naukova Dumka, 1981.

    Google Scholar 

  37. Miller, L.T. and Smith, G.S., Tensile Fracture in Carbon Steels, J. Iron Steel Inst., 1970, vol. 208, no. 11, pp. 988–1005.

    Google Scholar 

  38. Rosenfield, A.R., Hahn, G.T., and Embury, J.D., Fracture of Steels Containing Pearlite, Metall. Trans., 1972, vol. 3, no. 11, pp. 2797–2804.

    Article  CAS  Google Scholar 

  39. Zaikova, V.A., Startseva, I.E., and Filippov, B.N., Domennaya struktura i magnitnye svoistva elektrotekhnicheskikh stalei (Domain Structure and Magnetic Properties of Electric Steels), Moscow: Nauka, 1992.

    Google Scholar 

  40. Hetherington, M.G., Jakubovics, J.P., Szpunar, J.A., and Tanner, B.K., High-Voltage Lorentz Electron Microscopy Studies of Domain Structures and Magnetization Processes in Pearlitic Steels, Philos. Mag. B, 1987, vol. 56, no. 5, pp. 561–577.

    Article  CAS  Google Scholar 

  41. Troible, G. and Zeger, A., Effect of Flaws of Lattice on Magnetization Processes in Ferromagnetic Single Crystals, in Plasticheskaya deformatsiya monokristallov (Plastic Deformation of Single Crystals), Moscow: Mir, 1996, pp. 201–264.

    Google Scholar 

  42. Mikheev, M.N. and Gorkunov, E.S., Magnitnye metody strukturnogo analiza i nerazrushayushchego kontrolya (Magnetic Methods of Structural Analysis and Nondestructive Testing), Moscow: Nauka, 1993.

    Google Scholar 

  43. Chulkina, A.A., Ul’yanov, A.I., Arsent’eva, N.B., et al., The Role of Cementite in the Formation of Magnetic Hysteresis Properties of Plastically Deformed High-Carbon Steels: II. Magnetic Properties of Patented Wire Made of Steel 70, Defektoskopiya, 2006, no. 7, pp. 53–64 [Russ. J. Nondestruct. Test. (Engl. Transl.), no. 7, pp. 460–467].

  44. Ul’yanov, A.I., Gorkunov, E.S., Zagainov, A.V., et al., Effect of Structure and Phase Composition on the Coercive Force and Saturation Magnetization of Mechanically Alloyed Fe100−x Cx (x = 25; 32) Powders, Defektoskopiya, 2002, no. 7, pp. 60–69 [Russ. J. Nondestruct. Test. (Engl. Transl.), no. 7, pp. 528–536].

  45. Ul’yanov, A.I., Arsent’eva, N.B., Elsukov, E.P., et al., Effect of Quenching and Tempering on the Coercive Force of Fe-5 at. % C Powders Sintered after Mechanical Alloying, Defektoskopiya, 2005, no. 2, pp. 33–42 [Russ. J. Nondestruct. Test. (Engl. Transl.), no. 7, pp. 86–92].

  46. Vonsovskii, S.V., Magnetizm, Moscow: Nauka, 1971. Translated under the title Magnetism, New York: Wiley, 1974.

    Google Scholar 

  47. Dyakin, V.V. and Sandovskii, V.A., Teoriya i raschet nakladnykh vikhretokovykh preobrazovatelei (Theory and Calculation of Attachable Eddy-Current Transducers), Moscow: Nauka, 1981.

    Google Scholar 

  48. Sandovskii, V.A. and Nosal’skaya, N.I., On Measurements of the Electric Conductivity and the Magnetic Permeability Using Attachable Eddy-Current Transducers, Defektoskopiya, 1991, no. 12, pp. 44–48.

  49. Tanner, B.K., The Magnetic Properties of High Strength Steels, Nondestr. Test. Eval., 1989, vol. 5, pp. 9–15.

    Article  Google Scholar 

  50. English, A.T., Influence of Temperature and Microstructure on the Coercive Force of 0,8% C Steel, Acta Metall., 1967, vol. 15, no. 10, pp. 1573–1580.

    Article  CAS  Google Scholar 

  51. Dijkstra, L.J. and Wert, C., Effect of Inclusions on Coercive Force of Iron, Phys. Rev., 1950, vol. 79, no. 6, pp. 979–985.

    Article  CAS  Google Scholar 

  52. Leslie, W.J. and Stevens, D.W., The Magnetic Aging of Low-Carbon Steels and Silicon Irons, Trans. ASME, 1964, vol. 57, pp. 261–277.

    CAS  Google Scholar 

  53. Precht, W., Koerzitivfeldstarke bei Discusformiger Ausscheidung im α-Eisen, Z. Angew. Phys., 1966, vol. 21, no. 1, pp. 54–58.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarov.

Additional information

Original Russian Text © A.V. Makarov, R.A. Savrai, E.S. Gorkunov, T.I. Tabatchikova, S.A. Rogovaya, L.Yu. Egorova, 2008, published in Defektoskopiya, 2008, Vol. 44, No. 2, pp. 56–75.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, A.V., Savrai, R.A., Gorkunov, E.S. et al. Magnetic and electromagnetic inspection of mechanical properties of high-carbon steel with an initial fine-pearlite structure subjected to high-temperature annealing. Russ J Nondestruct Test 44, 117–131 (2008). https://doi.org/10.1134/S1061830908020071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830908020071

Keywords

Navigation