Skip to main content
Log in

Fundamentals of electromagnetic-acoustic thickness measurements with attachable probes: 1. Direct electromagnetic-acoustic transformation in a tangential polarizing field

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Formulas describing the projections of elastic displacements in longitudinal and shear waves, which are generated via electrodynamic and magnetic mechanisms, are derived at arbitrary values of macroscopic parameters of a solid. It is shown that, in ferromagnets, longitudinal waves can be compensated owing to antiphase properties of the electrodynamic and magnetic mechanisms; as a result, shear vibrations become most significant. It is suggested and substantiated that, in a tangential polarizing field, the operation of thickness gages may be associated with the magnetostriction mechanism of the electromagnetic-acoustic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kontorovich, V.M. and Glutsuk, A.M., Transformation of Sound and Electromagnetic Waves at the Boundary of a Conductor in a Magnetic Field, Zh. Eksp. Teor. Fiz., 1961, vol. 41, no. 4 (10), pp. 1195–1204.

    Google Scholar 

  2. Kontorovich, V.M. and Tishchenko, N.A., Transformation of Sound and Electromagnetic Waves at the Boundary of an Elastic Conductor in a Magnetic Field, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1963, no. 1, pp. 24–35.

  3. Grubin, H.L., Direct Electromagnetic Generation of Compressional Waves in Static Magnetic Fields, IEEE Trans. Sonics. Ultrason., 1966, vol. SU-16, pp. 27–30.

    Google Scholar 

  4. Quinn, J.J., Electromagnetic Generation of Acoustic Waves and the Surface Impedance of Metals, Phys. Lett. A, 1967, vol. 25A, no. 7, pp. 522–523.

    Article  Google Scholar 

  5. Meredith, D.J., Watts-Tobin, R.V., and Dobbs, E.R., Electromagnetic Generation of Ultrasonic Waves in Metals, Acoust. Soc. Am., 1969, vol. 45, no. 6, pp. 1393–1401.

    Article  CAS  Google Scholar 

  6. Grubin, H.L., Direct Electromagnetic Generation of Compressional Waves in Static Magnetic Fields, IEEE Trans. Sonics. Ultrason., 1970, vol. SU-17, no. 4, pp. 227–229.

    Google Scholar 

  7. Dobbs, E.R., Electromagnetic Generation of Ultrasonic Waves, Phys. Acoust., 1973, vol. 10, pp. 127–191.

    Google Scholar 

  8. Nowacki, W., Teoria Spre@zystosci (Theory of Elasticity), Warsaw: Pa@nstw. Wyd-wo Naukowe, 1970. Translated under the title Teoriya uprugosti, Moscow: Mir, 1975.

    Google Scholar 

  9. Shubaev, S.N., Excitation of Elastic Waves in Metal Half-Space with the Electromagnetic Method, Defektoskopiya, 1974, no. 2, pp. 45–55.

  10. Muzhitskii, V.F., Remezov, V.B., and Komarov, V.A., Fundamentals of EMA Thickness Measurements with Attachable Probes. I. Direct EMAT in a Normal Polarizing Field, Defektoskopiya, 2006, no. 10, pp. 40–58 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2006, vol. 42, no. 10.

  11. Komarov, V.A., Muzhitskii, V.F., and Gurevich, S.Yu., Teoriya fizicheskikh poley. T. III. Svyazannye polya (The Theory of Physical Fields: Vol. III. Coupled Fields), Chelyabinsk-Izhevsk: YuUrGU, 2000.

    Google Scholar 

  12. Thompson, R.B., A Model for the Electromagnetic Generation and Detection of Rayleigh and Lamb Waves, IEEE Trans. Sonics Ultrason., 1973, vol. 20, no. 4, pp. 340–346.

    Google Scholar 

  13. Il’in, I.V., Studying the Electromagnetic-Acoustic Method of Excitation and Reception of Rayleigh Waves in Ferromagnets, Cand. Sci. (Tech.) Dissertation, Leningrad: Ul’yanov (Lenin) Electrotechnical Inst., 1979.

    Google Scholar 

  14. Kharitonov, A.V., Excitation, Receiving, and Scattering of Ultrasonic Normal Waves in Plates, Doctoral Sci. (Phys.-Math.) Dissertation, Moscow: Acoust. Inst. Acad. Sci. USSR, 1984.

    Google Scholar 

  15. Komarov, V.A., Kvazistatsionarnoe elektromagnitno-akusticheskoe preobrazovanie v metallakh (Quasi-Stationary Electromagnetic-Acoustic Transformation in Metals), Sverdlovsk: Ural. Nauchn. Tsentr, Akad. Nauk SSSR, 1986.

    Google Scholar 

  16. Komarov, V.A., The Acoustic Field of the Near Radiation Zone Formed during EMAT in Metals, Defektoskopiya, 2004, no. 3, pp. 56–68 [Rus. J. of Nondestructive Testing (Engl. Transl.), 2004, vol. 40, no. 3, p. 188].

  17. Thompson, R.B., A Model for the Electromagnetic Generation of Ultrasonic Guided Waves in Ferromagnetic Metal Polycrystals, IEEE Trans. Sonics Ultrason., 1978, vol. SU-25, no. 1, pp. 7–15.

    Google Scholar 

  18. Glukhov, N.A., Orientation of a Electromagnetic-Acoustic Transducer of Shear Vibrations, Defektoskopiya, 1971, no. 1, pp. 13–19.

  19. Il’yasov, R.S. and Komarov, V.A., Electromagnetic-Acoustic Transformation of Bulk Waves in Ferromagnets by Attachable Transducers, Defektoskopiya, 1983, no. 11, pp. 53–60.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.F. Muzhitskii, V.B. Remezov, V.A. Komarov, 2006, published in Defektoskopiya, 2006, Vol. 42, No. 11, pp. 14–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muzhitskii, V.F., Remezov, V.B. & Komarov, V.A. Fundamentals of electromagnetic-acoustic thickness measurements with attachable probes: 1. Direct electromagnetic-acoustic transformation in a tangential polarizing field. Russ J Nondestruct Test 42, 717–727 (2006). https://doi.org/10.1134/S1061830906110027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830906110027

Keywords

Navigation