Skip to main content
Log in

The Cauchy Problem for the Defocusing Nonlinear Schrödinger Equation with a Loaded Term

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

The method of inverse spectral problems is applied for integrating the defocusing nonlinear Scrödinger (DNS) equation with loaded terms in the class of infinite-gap periodic functions. We describe the evolution of the spectral data for a periodic Dirac operator whose coefficient is a solution to the DNS equation with loaded terms. We prove the following assertions.

(1) It the initial function is real-valued, \(\pi \)-periodic, and analytic then the solution of the Cauchy problem for the DNS equation with loaded terms is a real-valued analytic function in \(x \).

(2) If \(\frac {\pi }{2} \) is the period (or antiperiod) of the initial function then \(\frac {\pi }{2} \) is the period (antiperiod) of the solution of the Cauchy problem problem with respect to \(x\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Letters 30, 1262 (1973).

    Article  MathSciNet  Google Scholar 

  2. B. A. Babazhanov and A. B. Khasanov, “Inverse problem for a quadratic pencil of Sturm–Liouville operators with finite-gap periodic potential on the half-line,” Differ. Uravn. 43, 723 (2007) [Differ. Equations 43, 737 (2015)].

    Article  MATH  Google Scholar 

  3. R. F. Bikbaev, “Large-time asymptotics of the solution of the nonlinear Schrödinger equation with boundary conditions of step type,” Teor. Mat. Fiz. 81, 3 (1989) [Theoret. Math. Phys. 81, 1011 (1989)].

    Article  MathSciNet  MATH  Google Scholar 

  4. R. F. Bikbaev and R. A. Sharipov, “Asymptotics for \(t\to \infty \) of the solution to the Cauchy problem for the Korteweg–de Vries equation in the class of potentials with finite-gap behavior as \(x\to \pm \infty \),” Teor. Mat. Fiz. 78, 345 (1989) [Theoret. Math. Phys. 78, 244 (1989)].

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Borg, “Eine Umkehrung der Sturm–Liouvillschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte,” Acta Math. 78, 1 (1946).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Currie, T. T. Roth, B. A. Watson, “Borg’s periodicity theorems for first-order self-adjoint systems with complex potentials,” Proc. Edinburgh Math. Soc., II. Ser. 60, 615 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Djakov and B. S. Mityagin, “Instability zones of periodic \(1 \)-dimensional Schrödinger and Dirac operators,” Uspekhi Mat. Nauk 61, no. 4, 77 (2006) [Russian Math. Surveys 61, 663 (2006)].

    Article  MathSciNet  MATH  Google Scholar 

  8. A. V. Domrin, “Remarks on the local version of the inverse scattering method,” Trudy Mat. Inst. Steklova 253, 46 (2006) [Proc. Steklov Inst. Math. 253, 37 (2006)].

    Article  MathSciNet  MATH  Google Scholar 

  9. A. V. Domrin, “Real-analytic solutions of the nonlinear Schrödinger equation,” Trudy Mosk. Mat. Obshch. 75, 205 (2014) [Trans. Moscow Math. Soc., 173 (2014)].

  10. B. A. Dubrovin and S. P. Novikov, “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation,” Zh. Eksp. Teor. Fiz. 67, 1231 (1975) [Soviet Phys. JETP 40, 1058 (1975)].

    MathSciNet  Google Scholar 

  11. L. D. Faddeev, “Properties of the \(S \)-matrix of the unidimensional Schrödinger equation,” Trudy Mat. Inst. Steklova 73, 314 (1964).

    MathSciNet  Google Scholar 

  12. I. S. Frolov, “Inverse scattering problem for a Dirac system on the whole axis,” Dokl. Akad. Nauk SSSR 207, 44 (1972) [Soviet Math., Dokl. 13, 1468 (1972)].

    MATH  Google Scholar 

  13. C. Gardner, I. Green, M. Kruskal, and R. Miura, “A method for solving the Korteveg–de Vries equation,” Phys. Rev. Letters 19, 1095 (1967).

    Article  MATH  Google Scholar 

  14. P. G. Grinevich and I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type,” Amer. Math. Soc., Transl., II Ser. 224, 125 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. L. Ince, Ordinary Differential Equations (Dover, New York, 1944).

    MATH  Google Scholar 

  16. A. R. Its, “Inversion of hyperelliptic integrals and integration of non-linear differential equations,” Vestn. Leningrad Univ. 7, no. 2, 39 (1976).

  17. A. R. Its and V. P. Kotlyarov, “Explicit formulas for solution of Schrödinger nonlinear equation,” Dokl. Akad. Nauk. Ukrain., Ser. A, no. 11, 965 (1976).

  18. A. R. Its and V. B. Matveev, “Schrödinger operators with finite-gap spectrum and \(N \)-soliton solutions of the Korteweg–de Vries equation,” Teor. Mat. Fiz. 23, 51 1975 [Theoret. Math. Phys. 23, 343 (1975)].

    Article  Google Scholar 

  19. A. B. Khasanov, “The inverse problem of scattering theory for a system of two nonselfadjoint first-order equations,” Dokl. Akad. Nauk SSSR 277, 559 (1984) [Soviet Math., Dokl. 30, 145 (1984)].

    MATH  Google Scholar 

  20. A. B. Khasanov, “The inverse scattering problem for a perturbed finite-gap Sturm–Liouville operator,” Dokl. Akad. Nauk SSSR 318, 1095 (1991) [Soviet Math., Dokl. 43, 882 (1991)].

    MathSciNet  MATH  Google Scholar 

  21. A. B. Khasanov, and A. M. Ibragimov, “On the inverse problem for Dirac’s operator with periodic potential,” Uzbek Mat. Zh., no. 3, 48 (2001) [in Russian].

  22. A. B. Khasanov and U. A. Khoitmetov, “On integration of Korteweg–de Vries equation in a class of rapidly decreasing complex-valued functions,” Izv. VUZ, Mat., no. 3, 79 (2018) [Russian Math. 62:3, 68 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  23. A. B. Khasanov and M. M. Matyakubov, “Integration of the nonlinear Korteweg–de Vries equation with an additional term,” Teor. Mat. Fiz. 203, 192 (2020) [Theoret. Math. Phys. 203, 596 (2020)].

    Article  MathSciNet  MATH  Google Scholar 

  24. A. B. Khasanov and G. U. Urazboev, “On the sine-Gordon equation with a self-consistent source corresponding to multiple eigenvalues,” Differ. Uravn. 43, 544 (2007) [Differ. Equations 43, 561 (2007)].

    Article  MathSciNet  MATH  Google Scholar 

  25. A. B. Khasanov and G. U. Urazboev, “On the sine-Gordon equation with a self-consistent source,” Mat. Trudy 11, 153 (2008) [Siberian Adv. Math. 19, 13 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  26. A. B. Khasanov and G. U. Urazboev, “Integration of the sine-Gordon equation with a self-consistent source of the integral type in the case of multiple eigenvalues,” Izv. VUZ, Mat., no. 3, 55 (2009) [Russian Math. 53:3, 45 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  27. A. B. Khasanov and A. B. Yakhshimuratov, “An analogue of G. Borg’s inverse theorem for a Dirac operator,” Uzbek Mat. Zh., no. 3, 40 (2000).

  28. A. B. Khasanov and A. B. Yakhshimuratov, “The Korteweg–de Vries equation with a self-consistent source in the class of periodic functions,” Teor. Mat. Fiz. 164, 214 (2010) [Theoret. Math. Phys. 164, 1008 (2010)].

    Article  MATH  Google Scholar 

  29. A. B. Khasanov and A. B. Yakhshimuratov, “Inverse problem on the half-line for the Sturm–Liouville operator with periodic potential,” Differ. Uravn. 51, 24 (2015) [Differ. Equations 51, 23 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  30. A. I. Kozhanov, “Nonlinear loaded equations and inverse problems,” Zh. Vychisl. Mat. Mat. Fiz. 44, 694 (2004) [Comput. Math. Math. Phys. 44, 657 (2004)].

    MathSciNet  MATH  Google Scholar 

  31. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Commun. Pure Appl. Math. 21, 467 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  32. B. M. Levitan, Inverse Sturm–Liouville problems (Nauka, Moscow, 1984) [Inverse Sturm–Liouville problems (VNU Science Press, Utrecht, 1987)].

  33. B. M. Levitan and A. B. Khasanov, “Estimation of the Cauchy function for finite-zone nonperiodic potentials,” Funkts. Anal. Prilozh. 26, no. 2, 18 (1992) [Funct. Anal. Appl. 26, 91 (1992)].

    Article  MathSciNet  MATH  Google Scholar 

  34. B. M. Levitan and I. S. Sargsyan, Sturm–Liouville and Dirac Operators (Nauka, Moscow, 1988) [Sturm–Liouville and Dirac Operators (Kluwer Academic Publishers, Dordrecht, 1990)].

  35. K. A. Mamedov, “Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues,” Izv. VUZ., Mat., no. 10, 73 (2020) [Russian Math. 64:10, 66 (2020)].

    Article  MathSciNet  MATH  Google Scholar 

  36. V. A. Marchenko, Sturm–Liouville Operators and Their Applications (Naukova Dumka, Kiev, 1977) [Sturm–Liouville Operators and Applications (Birkhäuser Verlag, Basel–Boston–Stuttgart, 1986)].

  37. T. V. Misyura, “Characterization of the spectra of periodic and antiperiodic boundary value problems generated by Dirac’s operator. I,” Teor. Funk. Funk. Anal. Prilozh. 30, 90 (1978).

  38. Yu. A. Mitropol’skiĭ, N. N. Bogolyubov (jr.), A. K. Prikarpatskiĭm and V. G. Samoĭlenko, Integrable Dynamical Systems: Spectral and Differential-Geometric Aspects (Naukova Dumka, Kiev, 1987) [in Russian].

  39. A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation,” Mat. Sb. 185, 103 (1994) [Sb. Math. 82, 461 (1995)].

    Article  MathSciNet  Google Scholar 

  40. A. O. Smirnov, “The elliptic-in-\(t \) solutions of the nonlinear Schrödinger equation,” Teor. Mat. Fiz. 107, 188 (1996) [Theoret. Math. Phys. 107, 568 (1996)].

    Article  MathSciNet  MATH  Google Scholar 

  41. I. V. Stankevich, “On an inverse problem of spectral analysis for Hill’s equation,” Dokl. Akad. Nauk SSSR 192, 34 (1970) [Soviet Math., Dokl. 11, 582 (1970)].

    Google Scholar 

  42. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Methods in the Theory of Solitons (Nauka, Moscow, 1986) [L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 2007)].

  43. E. Trubowitz, “The inverse problem for periodic potentials,” Commun. Pure. Appl. Math. 30, 321 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Wadati, “The exact solution of the modified Korteweg–de Vries equation,” J. Phys. Soc. Japan 32, 1681 (1972).

    Article  Google Scholar 

  45. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Soviet Phys. JETP 34, 62 (1972)].

    MathSciNet  Google Scholar 

  46. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskiĭ, Theory of Solitons. The Method of the Inverse Problem (Nauka, Moscow, 1980) [S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method (Plenum Publ. Corp., New York–London, 1984)].

  47. V. E. Zakharov, L. A. Takhtadzhyan, and L. D. Fadeev, “Complete description of solutions of the ‘sine-Gordon’ equation,” Dokl. Akad. Nauk SSSR 219, 1334 (1974) [Soviet Phys., Dokl. 19, 824 (1974)].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. B. Muminov or A. B. Khasanov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muminov, U.B., Khasanov, A.B. The Cauchy Problem for the Defocusing Nonlinear Schrödinger Equation with a Loaded Term. Sib. Adv. Math. 32, 277–298 (2022). https://doi.org/10.1134/S1055134422040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1055134422040046

Keywords

Navigation