Skip to main content
Log in

Solution to the Dirichlet Problem for the Polyharmonic Equation in the Ball

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

We give a representation of the solution to the Dirichlet problem for the inhomogeneous polyharmonic equation in the unit ball in terms of solutions to the Dirichlet problem for the Laplace equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sh. A. Alimov, “A problem involving an inclined derivative,” Differ. Uravn. 17, 1738 (1981) [Differ. Equ. 17, 1073 (1982)].

    MATH  Google Scholar 

  2. E. Almansi, “Sull’integrazione dell’equazione differenziale \(\Delta ^{2n}u=0 \),” Ann. Mat. Pura Appl. 2:3, 1 (1899).

    Article  Google Scholar 

  3. H. Begehr, “Biharmonic Green functions,” Le Matematiche 2006. V. LXI. P. 395–405.

  4. H. Begehr, T. N. H. Vu, and Z.-X. Zhang, “Polyharmonic Dirichlet Problems,” Proc. Steklov Inst. Math. 255, 13 (2006).

    Article  MathSciNet  Google Scholar 

  5. A. V. Bitsadze, Equations of Mathematical Physics (Nauka, Moscow, 1982; Mir, Moscow, 1980).

    MATH  Google Scholar 

  6. T. Boggio, “Sulle funzioni di Green d’ordine \(m \),” Rend. Circ. Mat. Palermo. 20, 97 (1905).

    Article  Google Scholar 

  7. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions. Vol. II. Bateman Manuscript Project (McGraw-Hill Book Co., New York–Toronto–London, 1953; Nauka, Moscow, 1966).

  8. F. Gazzola, H. C. Grunau, and G. Sweers, Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains. Lecture Notes in Math., 1991 (Springer, Berlin, 2010).

  9. T. S. Kal’menov and B. D. Koshanov, “Representation for the Green’s function of the Dirichlet problem for polyharmonic equations in a ball,” Sib. Mat. Zh. 49, 534 (2008) [Sib. Math. J. 49, 423 (2008)].

    Article  MathSciNet  Google Scholar 

  10. T. Sh. Kal’menov and D. Suragan, “On a new method for constructing the Green function of the Dirichlet problem for the polyharmonic equation,” Differ. Uravn. 48, 435 (2012) [Differ. Equ. 48, 441 (2012)].

    Article  MathSciNet  Google Scholar 

  11. V. V. Karachik, “On the mean value property for polyharmonic functions in the ball,” Mat. Tr. 16 (2), 69 (2013) [Sib. Adv. Math. 24, 169 (2014)].

    Article  MathSciNet  Google Scholar 

  12. V. V. Karachik, “Construction of polynomial solutions to the Dirichlet problem for the polyharmonic equation in a ball,” Zh. Vychisl. Mat. Mat. Fiz. 54, 1149 (2014) [Comput. Math. Math. Phys. 54, 1122 (2014)].

    Article  MathSciNet  Google Scholar 

  13. V. V. Karachik, “On the arithmetic triangle arising from the solvability conditions for the Neumann problem,” Mat. Zametki 96, 228 (2014) [Math. Notes 96, 217 (2014)].

    Article  MathSciNet  Google Scholar 

  14. V. V. Karachik, “A Neumann-type problem for the biharmonic equation,” Sib. Adv. Math. 27, 103 (2017).

    Article  MathSciNet  Google Scholar 

  15. V. V. Karachik, “Riquier–Neumann problem for the polyharmonic equation in a ball,” Differ. Uravn. 54, 653 (2018) [Differ. Equ. 54, 654 (2018)].

    Article  MathSciNet  Google Scholar 

  16. V. V. Karachik, “The Green Function of the Dirichlet Problem for the Biharmonic Equation in a Ball,” Zh. Vychisl. Mat. Mat. Fiz. 59, 70 (2019) [Comput. Math. Math. Phys. 59, 66 (2019)].

    Article  MathSciNet  Google Scholar 

  17. V. V. Karachik, “Presentation of solution of the Dirichlet problem for biharmonic equation in the unit ball through the Green function,” Chelyabinskiĭ Fiz.-Mat. Zh. 5, 391 (2020).

    MathSciNet  MATH  Google Scholar 

  18. V. V. Karachik, “The Green function of the Dirichlet problem for the triharmonic equation in the ball,” Mat. Zametki 107, 87 (2020) [Math. Notes 107, 105 (2020)].

    Article  MathSciNet  Google Scholar 

  19. V. V. Karachik, “Green’s functions of the Navier and Riquier–Neumann problems for the biharmonic equation in the ball,” Differ. Uravn. 57, 673 (2021) [Differ. Equ. 57, 654 (2021)].

    Article  MathSciNet  Google Scholar 

  20. V. V. Karachik and N. A. Antropova, “On the solution of the inhomogeneous polyharmonic equation and the inhomogeneous Helmholtz equation,” Differ. Uravn. 46, 384 (2010) [Differ. Equ. 46, 387 (2010)].

    Article  MathSciNet  Google Scholar 

  21. V. V. Karachik and B. Kh. Turmetov, “On Green’s function of the Robin problem for the Poisson equation,” Adv. Pure Appl. Math. 10, 203 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported by the Government of the Russian Federation (Order no. 211 of 16.03.2013, Agreement 02.A03.21.0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Karachik.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karachik, V.V. Solution to the Dirichlet Problem for the Polyharmonic Equation in the Ball. Sib. Adv. Math. 32, 197–210 (2022). https://doi.org/10.1134/S1055134422030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1055134422030038

Keywords

Navigation