Skip to main content
Log in

Unsaturated Algorithms for the Numerical Solution of Elliptic Boundary Value Problems in Smooth Axisymmetric Domains

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

A fundamentally new, unsaturated, method is constructed for the numerical solution of the Laplace equation in a smooth axisymmetric domain of rather general shape. An essential feature of this method is lack of the leading error term \(O(m^{-r}) \), where \(r \) is a fixed integer with \(r>2 \). As a result, the method automatically adjusts to the excess (extraordinary) smoothness of solutions of problems. The method provides us with a new computational tool whose discretization inherits both differential and spectral characteristics of the operator of the elliptic problem under consideration. This allows us to take efficiently into account the fact that the domain is axisymmetric which is a stumbling block for numerical methods with the leading error term. Our result is of a fundamental interest because, for \(C^{\,\infty } \)-smooth solutions, computer constructs a numerical solution (up to a slowly growing multiplier) with an absolutely sharp exponential error estimate. The sharpness is caused by the asymptotics of the Aleksandrov \(m \)-width of the compact set of \(C^{\,\infty } \)-smooth functions that contains the exact solution of the problem. This asymptotics is presented by a function that exponentially decays as the integer parameter \(m\) grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (U.S. Department of Commerce, Washington, 1964).

  2. S. D. Algazin, “Localization of eigenvalues of closed linear operators,” Sib. Matem. Zh. 24, (1983) [Siberian Math. J. 24, 155 (1983)].

    Article  MathSciNet  Google Scholar 

  3. S. D. Algazin and I. A. Kiĭko, Flutter of Plates and Shells (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  4. N. N. Anuchina, K. I. Babenko, S. K. Godunov, N. A. Dmitriev, L. A. Dmitrieva, V. F. D’yachenko, A. V. Zabrodin, O. V. Lokutsievskiĭ, E. V. Malinovskiĭ, I. F. Podlivaev, G. P. Prokopov, I. D. Sofronov, and R. P. Fedorenko, Theoretical Principles and Construction of Numerical Algorithms of Mathematical Physics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  5. K. I. Babenko, “Approximation of periodic functions of many variables by trigonometric polynomials,” Dokl. Akad. Nauk SSSR 132, 247 (1960) [Soviet Math., Dokl. 1, 513 (1960)].

    MathSciNet  MATH  Google Scholar 

  6. K. I. Babenko, “Approximation by trigonometric polynomials in a certain class of periodic functions of several variables,” Dokl. Akad. Nauk SSSR 132, 982 (1960) [Soviet Math. Dokl. 1, 672 (1960)].

    MathSciNet  MATH  Google Scholar 

  7. K. I. Babenko, “Some remarks on approximation of functions of several variables,” Mat. Sb. 86, 499 (1971) [Math. USSR, Sb. 15, 493 (1971)].

    Article  Google Scholar 

  8. K. I. Babenko, An Approach to Estimating the Quality of Computational Algorithms (Keldysh Inst. Appl. Math. AN SSSR, Moscow, 1974) [Preprint, in Russian].

  9. K. I. Babenko, “Some remarks on the discretization of elliptic problems,” Dokl. Akad. Nauk SSSR 221, 11 (1975) [Soviet Math. Dokl. 16, 263 (1975)].

    MATH  Google Scholar 

  10. K. I. Babenko “Estimating the quality of computational algorithms. I and II,” Comput. Methods Appl. Mech. Eng. 7, 47, 135 (1976).

  11. K. I. Babenko, Foundations of Numerical Analysis (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  12. K. I. Babenko and V. Yu. Petrovich, Demonstrative Computations on Electronic Computing Machines (Keldysh Inst. Appl. Math. AN SSSR, Moscow, 1983) [Preprint, in Russian].

  13. K. I. Babenko and V. A. Stebunov, On the Spectral Orr–Sommefeld Problem (Keldysh Inst. Appl. Math. AN SSSR, Moscow, 1975) [Preprint, in Russian].

  14. V. N. Belykh, “On the problem of the flow of an ideal incompressible fluid around axisymmetric large aspect-ratio bodies,” Prikl. Mekh. Tekhn. Fiz. 47, no. 5, 56 (2006) [J. Appl. Mech. Tech. Phys. 47, 661 (2006)].

    Article  MathSciNet  Google Scholar 

  15. V. N. Belykh, “Algorithms for computing complete elliptic integrals and some related functions,” Sib. Zh. Ind. Mat. 15, 21 (2012) [J. Appl. Ind. Math. 6, 410 (2012)]. http://mi.mathnet.ru/sjim722.

  16. V. N. Belykh, “The problem of numerical realization of integral operators of axisymmetric boundary value problems (algorithms without saturation),” Ufa Mat. Zh. 4, 22 (2012) [in Russian]. http://matem.anrb.ru/sites/default/files/files/vup16/Belykh.pdf.

  17. V. N. Belykh, “On the evolution of a finite volume of ideal incompressible fluid with a free surface,” Dokl. Akad. Nauk 473, 650 (2017) [Dokl. Phys. 62, 213 (2017)]. https://doi.org/10.7868/S0869565217120052

  18. V. N. Belykh, “The problem of constructing unsaturated quadrature formulae on an interval,” Mat. Sb. 210, 27 (2019) [Sb. Math. 210, 24 (2019)]. https://doi.org/10.4213/sm8984

  19. V. N. Belykh, “Numerical implementation of nonstationary axisymmetric problems of an ideal incompressible fluid with a free surface,” Prikl. Mekh. Tekh. Fiz. 60, 226 (2019) [J. Appl. Mech. Tech. Phys. 60, 382 (2019)]. https://doi.org/doi: 10.15372/PMTF20190219

  20. V. N. Belykh, “Superconvergent algorithms for the numerical solution of elliptic boundary value problems (on the problem of K. I. Babenko),” in: Analytical and Numerical Methods for Solving Problems of Hydrodynamics, Mathematical Physics, and Biology, 37 (Keldysh Inst. Appl. Math. RAS, Moscow, 2019) [in Russian]. http://www.kiam.ru/babenko2018/Babenko2019-8.pdf.

  21. V. N. Belykh, “Superconvergent algorithms for the numerical solution of the Laplace equation in smooth axisymmetric domains,” Zh. Vychisl. Mat. Mat. Fiz. 60, 553 (2020) [Comput. Math. Math. Phys. 60, 545 (2020)]. https://doi.org/10.31857/S0044466920040031

  22. V. N. Belykh, “Numerical solution of the axisymmetric Dirichlet–Neumann problem for Laplace’s equation (algorithms without saturation),” in: Continuum Mech., Appl. Math. Scientific Comp.: Godunov’s Legacy, 13 (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-38870-6-3

  23. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials (Nauka, Moscow, 1977) [V. K. Dzyadyk and I. A. Shevchuk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials (de Gruyter, Berlin, 2008)].

  24. A. L. Garkavi, “Simultaneous approximation to a periodic function and its derivatives by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat. 24, 103 (1960) [in Russian].

  25. S. K. Godunov, Lectures on Modern Aspects of Linear Algebra (Nauchnaya Kniga, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  26. S. K. Godunov, A. G. Antonov, O. P. Kirilyuk, and V. I. Kostin, The Guaranteed Precision of Linear Equations Solutions in Euclidean Spaces (Nauka, Novosibirsk, 1992) [Guaranteed Accuracy in Numerical Linear Algebra (Kluwer Academic Publishers, Dordrecht, 1993)].

  27. N. M. Gunther, La Théorie du Potentiel et ses Applications aux Problèmes Fondamentaux de la Physique Mathématique (Gauthier-Villars, Paris, 1934) [N. M. Günter, Potential Theory and its Applications to Basic Problems of Mathematical Physics (Frederick Ungar Publishing Co., New York, 1967)].

  28. T. Kato, Perturbation Theory for Linear Operators (Springer Verlag, Berlin–Heidelberg–New York, 1980).

    MATH  Google Scholar 

  29. E. P. Kazandzhan, On a Numerical Method for Conformal Mapping of Simple Connected Domains (Keldysh Inst. Appl. Math. AN SSSR, Moscow, 1975) [Preprint, in Russian].

  30. L. G. Loĭtsyanskiĭ, Mechanics of Fluid and Gas (Nauka, Moscow, 1978) [Mechanics of Liquids and Gases (Begell House, New York–Wallingford, U.K., 1995)].

  31. J. Marcinkiewicz, “Sur l’interpolation. I,” Studia Math. 6, 1 (1936) [in French].

  32. S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations (Fizmatgiz, Moscow, 1962) [Multidimensional Singular Integrals and Integral Equations (Pergamon Press, Oxford–London–Edinburgh–New York–Paris–Frankfurt, 1965)].

  33. S. M. Nikolskiĭ, “Approximation on manifolds,” East. J. Approx. 1, 1 (1995).

    MathSciNet  Google Scholar 

  34. S. M. Nikolskiĭ, “Approximation on a manifold by algebraic polynomials,” Trudy Mat. Inst. Steklova 210, 189 (1995) [Proc. Steklov Inst. Math. 210, 141 (1995)].

    Google Scholar 

  35. M. D. Ramazanov, “Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer,” Mat. Sb. 204, no. 7, 71 (2013) [Sb. Math. 204, 1003 (2013)].

    Article  MathSciNet  Google Scholar 

  36. H. F. Sinwel, “Uniform approximation of differentiable functions by algebraic polynomials,” J. Approx. Theory 32, 1 (1981).

    Article  MathSciNet  Google Scholar 

  37. S. L. Sobolev, “Remarks on the numerical solution of integral equations,” Izv. Akad. Nauk SSSR, Ser. Mat. 20, 413 (1956) [in Russian].

  38. E. Tadmor, “The exponential accuracy of Fourier and Chebyshev differencing methods,” SIAM J. Numer. Anal. 23, 1 (1986).

    Article  MathSciNet  Google Scholar 

  39. T. W. Tee and L. N. Trefethen, “A rational spectral collocation method with adaptively transformed Chebyshev grid points,” SIAM J. Sci. Comput. 28, 1798 (2006).

    Article  MathSciNet  Google Scholar 

  40. V. L. Vaskevich, Guaranteed Accuracy of Computation for Multidimensional Integrals (Doctoral Thesis, Novosibirsk, 2003) [in Russian].

  41. M. Zamansky, “Classes de saturation des procédés de sommation des séries de Fourier et applications aux séries trigonométriques,” Ann. Sci. École Norm. Sup., III. Sér. 67, no. 3, 161 (1950).

Download references

Funding

The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics, SB RAS (project FWNF-2022-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Belykh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, V.N. Unsaturated Algorithms for the Numerical Solution of Elliptic Boundary Value Problems in Smooth Axisymmetric Domains. Sib. Adv. Math. 32, 157–185 (2022). https://doi.org/10.1134/S1055134422030014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1055134422030014

Keywords

Navigation