Skip to main content

On Orlicz–Sobolev Classes on Quotient Spaces


We study the quotient spaces of the unit ball by some group of Möbius transformations. For mappings of such spaces, we obtain a bound for the distortion of a modulus of a family of spheres. As an application, we prove theorems on the local and boundary behavior of Orlicz–Sobolev classes on the quotient spaces.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    B. N. Apanasov, Geometry of Discrete Groups and Manifolds (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  2. 2

    B. Apanasov, “Topological barriers for locally homeomorphic quasiregular mappings in \(3 \)-space,” Ann. Acad. Sci. Fenn. Math. 43, 579 (2018).

    MathSciNet  Article  Google Scholar 

  3. 3

    A. P. Calderón, “On the differentiability of absolutely continuous functions,” Riv. Math. Univ. Parma 2, 203 (1951).

    MathSciNet  MATH  Google Scholar 

  4. 4

    M. Cristea, “Local homeomorphisms having local \(ACL^n \) inverses,” Complex Var. Elliptic Equ. 53, 77 (2008).

    MathSciNet  Article  Google Scholar 

  5. 5

    H. Federer, Geometric Measure Theory (Springer-Verlag, Berlin-Heidelberg-New York, 1969; Nauka, Moscow, 1987).

    MATH  Google Scholar 

  6. 6

    B. Fuglede, “Extremal length and functional completion,” Acta Math. 98, 171 (1957).

    MathSciNet  Article  Google Scholar 

  7. 7

    F.-W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc. 103, 353 (1962).

    MathSciNet  Article  Google Scholar 

  8. 8

    V. Gol’dshtein and A. Ukhlov, “Traces of functions of \(L^1_2 \) Dirichlet spaces on the Carathéodory boundary,” Stud. Math. 235:3, 209 (2016).

    Article  Google Scholar 

  9. 9

    A. V. Greshnov, “Local approximation of uniformly regular Carnot–Carathéodory quasispaces by their tangent cones,” Sib. Mat. Zh. 48, 290 (2007) [Sib. Math. J. 48, 229 (2007)].

    Article  Google Scholar 

  10. 10

    V. Ya. Gutlyanskii, V. I. Ryazanov, and E. Yakubov, “The Beltrami equations and prime ends,” J. Math. Sci. 210, 22 (2015).

    MathSciNet  Article  Google Scholar 

  11. 11

    J. Heinonen, Lectures on Analysis on Metric Spaces (Springer-Verlag, New York, 2001).

    Book  Google Scholar 

  12. 12

    A. A Ignat’ev and V. I. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukr. Mat. Visn. 2, 395 (2005) [Ukr. Math. Bull. 2, 403 (2005)].

    MathSciNet  MATH  Google Scholar 

  13. 13

    D. P. Il’ytko and E. A. Sevost’yanov, “Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds,” Mat. Sb. 207, 65 (2016) [Sb. Math. 207, 537 (2016)].

    MathSciNet  Article  Google Scholar 

  14. 14

    D. V. Isangulova, “The class of mappings with bounded specific oscillation, and integrability of mappings with bounded distortion on Carnot groups,” Sib. Mat. Zh. 48, 313 (2007) [Sib. Math. J. 48, 249 (2007)].

    MathSciNet  Article  Google Scholar 

  15. 15

    T. Iwaniec and G. Martin, Geometric Function Theory and Nonlinear Analysis (Clarendon Press, Oxford, 2001).

    MATH  Google Scholar 

  16. 16

    D.A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost’yanov, “Toward the theory of Orlicz-Sobolev classes,” Algebra Anal. 25(6), 50 (2013) [St. Petersbg. Math. J. 25, 929 (2014)].

    Article  Google Scholar 

  17. 17

    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  18. 18

    I. Markina, “Singularities of quasiregular mappings on Carnot groups,” Sci. Ser. A Math. Sci. (N.S.) 11, 69 (2005).

    MathSciNet  MATH  Google Scholar 

  19. 19

    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory (Springer, New York, 2009).

    MATH  Google Scholar 

  20. 20

    O. Martio and U. Srebro, “Automorphic quasimeromorphic mappings in \({\mathbb R}^n \),” Acta Math. 135, 221 (1975).

    MathSciNet  Article  Google Scholar 

  21. 21

    O. Martio and U. Srebro, “Periodic quasimeromorphic mappings in \({\mathbb R}^n \),” J. Anal. Math. 28, 20 (1975).

    Article  Google Scholar 

  22. 22

    V. G. Maz’ya, Sobolev Spaces (Leningrad State University, Leningrad, 1985; Springer-Verlag, Berlin, 1985).

    Book  Google Scholar 

  23. 23

    V. M. Miklyukov, Conformal Mapping of a Nonregular Surface and Its Applications (Volgograd State University, Volgograd, 2005) [in Russian].

    Google Scholar 

  24. 24

    T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis (Springer-Verlag, Berlin, 1955).

    Book  Google Scholar 

  25. 25

    Yu. G. Reshetnyak, Space Mappings with Bounded Distortion (Nauka, Novosibirsk, 1982; AMS, Providence, RI, 1989).

    MATH  Google Scholar 

  26. 26

    S. Rickman, Quasiregular Mappings (Springer-Verlag, Berlin, 1993).

    Book  Google Scholar 

  27. 27

    V. Ryazanov and S. Volkov, “On the boundary behavior of mappings in the class \( W^{1,1}_{\rm loc}\) on Riemann surfaces,” Complex Anal. Oper. Theory 11, 1503–1520 (2017).

    MathSciNet  Article  Google Scholar 

  28. 28

    V. Ryazanov and S. Volkov, “Prime ends in the Sobolev mapping theory on Riemann surfaces,” Mat. Stud. 48, 24 (2017).

    MathSciNet  Article  Google Scholar 

  29. 29

    E. A. Sevost’yanov, “On boundary extension of mappings in metric spaces in terms of prime ends,” Ann. Acad. Sci. Fenn. Math. 44, 65 (2019).

    MathSciNet  Article  Google Scholar 

  30. 30

    S. Saks, Theory of the Integral (G. E. Stechert & Co., New York, 1937; Izd-vo Inostr. Lit., Moscow, 1949).

    MATH  Google Scholar 

  31. 31

    E. A. Sevost’yanov, The Study of Space Mappings by a Geometric Method (Naukova Dumka, Kiev, 2014) [in Russian].

    Google Scholar 

  32. 32

    E. A. Sevost’yanov, “Local and boundary behavior of maps in metric spaces,” Algebra Anal. 28(6), 118 (2016) [St. Petersbg. Math. J. 28, 807 (2017)].

    Article  Google Scholar 

  33. 33

    V. A. Shlyk, “The equality between \(p \)-capacity and \(p \)-modulus,” Sib. Mat. Zh. 34(6), 216 (1993) [Sib. Math. J. 34, 1196 (1993)].

    MathSciNet  Article  Google Scholar 

  34. 34

    E. S. Smolovaya, “Boundary behaviour of ring \(Q \)-homeomorphisms in metric spaces,” Ukr. Mat. Zh. 62, 682 (2010) [Ukr. Math. J. 62, 785 (2010)].

    MathSciNet  Article  Google Scholar 

  35. 35

    A. D. Ukhlov and S. K. Vodop’yanov, “Mappings with bounded \((P, Q) \)-distortion on Carnot groups,” Bull. Sci. Math. 134, 605 (2010).

    MathSciNet  Article  Google Scholar 

  36. 36

    J. Väisälä, Lectures on \( n\)-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics, Vol. 229 (Springer-Verlag, Berlin, 1971).

    Book  Google Scholar 

  37. 37

    S. K. Vodop’yanov and V. M. Gol’dshtein, Sobolev Spaces and Special Classes of Mappings (Novosibirsk State University, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  38. 38

    S. K. Vodop’yanov, V. M. Gol’dshtein, and Yu. G. Reshetnyak, “On geometric properties of functions with generalized first derivatives,” Usp. Mat. Nauk 34, 17 (1979) [Russ. Math. Surv. 34, 19 (1979)].

    MathSciNet  Article  Google Scholar 

  39. 39

    M. Vuorinen, Conformal Geometry and Quasiregular Mappings (Springer-Verlag, Berlin, 1988).

    Book  Google Scholar 

  40. 40

    W. P. Ziemer, “Extremal length and conformal capacity,” Trans. Amer. Math. Soc. 126, 460 (1967).

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. A. Sevost’yanov.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sevost’yanov, E.A. On Orlicz–Sobolev Classes on Quotient Spaces. Sib. Adv. Math. 31, 209–228 (2021).

Download citation


  • mappings with finite and bounded distortion
  • local and boundary behavior of mappings
  • moduli of families of curves.