Skip to main content

On a Minimal Cubature Formula of Degree Two for a Torus in \({\mathbb R}^3 \)

Abstract

We construct a minimal cubature formula of degree \(2 \) for a torus in \({\mathbb R}^3 \).

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    I. M. Fedotova, “Cubature formulas for a torus of degree \(2 \) with a minimal number of knots,” in: Cubature Formulae and Their Applications, 201 (Krasnoyarsk Gos. Tekh. Univ., Krasnoyarsk, 2000) [in Russian].

  2. 2

    I. P. Mysovskukh, Interpolational Cubature Formulas (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  3. 3

    M. V. Noskov, “On approximate integration over the torus surface,” Vestn. St.-Peterburg. Univ., Ser. I, Mat. Mekh. Astron., no. 3, 100 (1992) [Vestn. St. Petersburg. Univ., Math. 25:3, 61 (1992)].

    MATH  Google Scholar 

  4. 4

    M. V. Noskov and I. M. Fedotova, “On invariant cubature formulas for a torus in \( {\mathbb R}^3\),” Zh. Vychisl. Mat. Mat. Fiz. 43, 1323 (2003) [Comput. Math. Math. Phys. 43, 1270 (2003)].

    MathSciNet  MATH  Google Scholar 

  5. 5

    M. V. Noskov and I. M. Fedotova, “Minimal cubature formulas of degree \(3 \) for a torus in \({\mathbb R}^3 \),” Mat. Trudy 18, 49 (2015) [Siberian Adv. Math. 26, 90 (2016)].

    MathSciNet  Article  Google Scholar 

  6. 6

    S. L. Sobolev and V. L. Vaskevich, The Theory of Cubature Formulas (Izd. Inst. Mat. SO RAN, Novosibirsk, 1996) [The Theory of Cubature Formulas (Kluwer Academic Publishers, Dordrecht, 1997)].

Download references

Funding

The research was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project No. FSRZ-2020-0011).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. V. Noskov or I. M. Fedotova.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noskov, M.V., Fedotova, I.M. On a Minimal Cubature Formula of Degree Two for a Torus in \({\mathbb R}^3 \). Sib. Adv. Math. 31, 45–52 (2021). https://doi.org/10.1134/S1055134421010053

Download citation

Keywords

  • cubature formulas
  • torus
  • reproducing kernel