Skip to main content

The Index Set of the Class of Autostable Ordered Abelian Groups

Abstract

We find an exact estimate for the algorithmic complexity of the class of autostable ordered Abelian groups.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    R. G. Downey, S. S. Goncharov, A. M. Kach, J. F. Knight, O. V. Kudinov, A. G. Melnikov, and D. Turetsky, “Decidability and computability of certain torsion-free abelian groups,” Notre Dame J. Formal Logic 51, 85 (2010).

    MathSciNet  MATH  Google Scholar 

  2. 2

    R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A Montalbá’n, and D. D. Turetsky, “The complexity of computable categoricity,” Adv. Math. 268, 423 (2015).

    MathSciNet  Article  Google Scholar 

  3. 3

    Yu. L. Ershov and S. S. Goncharov, Constructive Models (Nauchnaya Kniga, Novosibirsk, 1999) [Constructive Models (Consultants Bureau, New York, 2000)].

  4. 4

    S. S. Goncharov, “Problem of the number of non-self-equivalent constructivizations,” Algebra i logika 19, 621 (1980) [Algebra and Logic 19, 401 (1980)].

    Article  Google Scholar 

  5. 5

    S. S. Goncharov, “ The problem of the number of nonautoequivalent constructivizations,” Dokl. Akad. Nauk SSSR 251, 271 (1980) [Soviet Math., Dokl. 21, 411 (1980)].

    MATH  Google Scholar 

  6. 6

    S. S. Goncharov, “Autostability of prime models under strong constructivizations,” Algebra i logika 48, 729 (2009) [Algebra and Logic 48, 410 (2009)].

    MathSciNet  Article  Google Scholar 

  7. 7

    S. S. Goncharov, “On autostability of almost prime models relative to strong constructivizations,” Uspekhi Mat. Nauk 65, no. 5, 107 (2010) [Russian Math. Surveys 65, 901 (2010)].

    MathSciNet  Article  Google Scholar 

  8. 8

    S. S. Goncharov, N. A. Bazhenov, and M. I. Marchuk, “The index set of Boolean algebras autostable relative to strong constructivizations,” Sib. Matem. Zh. 56, 498 (2015) [Siberian Math. J. 56, 393 (2015)].

    MathSciNet  Article  Google Scholar 

  9. 9

    S. S. Goncharov, N. A. Bazhenov, and M. I. Marchuk, “The index set of linear orderings that are autostable relative to strong constructivizations,” Vestnik Novosibirsk. Gos. Univ., Ser. Mat. Mekh. Inform. 15:3, 51 (2015) [in Russian].

    MATH  Google Scholar 

  10. 10

    S. S. Goncharov, N. A. Bazhenov, and M. I. Marchuk, “The index set of the groups autostable relative to strong constructivizations,” Sib. Matem. Zh. 58, 95 (2017) [Siberian Math. J. 58, 72 (2017)].

    MathSciNet  Article  Google Scholar 

  11. 11

    S. S. Goncharov and J. F. Knight, “Computable structure and non-structure theorems,” Algebra i logika 41, 639 (2002) [Algebra and Logic 41, 351 (2002)].

    MathSciNet  Article  Google Scholar 

  12. 12

    S. S. Goncharov, S. Lempp, and R. A. Solomon, “The computable dimension of ordered abelian groups,” Adv. Math. 175, 102 (2003).

    MathSciNet  Article  Google Scholar 

  13. 13

    S. S. Goncharov and M. I. Marchuk, “Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations,” Algebra i logika 54, 163 (2015) [Algebra and Logic 54, 108 (2015)].

    MathSciNet  Article  Google Scholar 

  14. 14

    S. S. Goncharov and M. I. Marchuk, “Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations,” Algebra i logika 54, 663 (2015) [Algebra and Logic 54, 428 (2015)].

    MathSciNet  Article  Google Scholar 

  15. 15

    M. I. Marchuk, “Index set of structures with two equivalence relations that are autostable relative to strong constructivizations,” Algebra i logika 55, 465 (2016) [Algebra and Logic 55, 306 (2016)].

    MathSciNet  Article  Google Scholar 

  16. 16

    A. G. Melnikov, “Computable ordered abelian groups and fields,” in: Programs, Proofs, Processes (Proc. \(6\)th Conf. Comput. Europe), 321 (Springer, Berlin, 2010).

  17. 17

    A. G. Melnikov and K. M. Ng, “Computable torsion abelian groups,” Adv. Math. 325, 864 (2018).

    MathSciNet  Article  Google Scholar 

  18. 18

    A. T. Nurtazin, Computable Classes and Algebraic Criteria of Autostability (Ph. D. Thesis, Inst. Mat. Mekh., Alma-Ata, 1974) [in Russian].

  19. 19

    R. I. Soare, Turing Computability. Theory and Applications (Springer, Berlin, 2016).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Sergeĭ S. Goncharov and Nikolaĭ A. Bazhenov for useful discussions

Funding

The work was partially supported by the Russian Foundation for Basic Research (project 17-01-00247).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. I. Marchuk.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marchuk, M.I. The Index Set of the Class of Autostable Ordered Abelian Groups. Sib. Adv. Math. 31, 40–44 (2021). https://doi.org/10.1134/S1055134421010041

Download citation

Keywords

  • computable model
  • autostability
  • computable categoricity
  • autostable model
  • index set
  • ordered Abelian group