Skip to main content

The Analytic Embedding of Geometries with Scalar Product


We solve the problem of finding all \((n+2)\)-dimensional geometries defined by a nondegenerate analytic function

$$ \varphi (\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B,w_A,w_B),$$

which is an invariant of a motion group of dimension \((n+1)(n+2)/2\). As a result, we have two solutions: the expected scalar product \(\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B+\varepsilon w_Aw_B \) and the unexpected scalar product \(\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B+w_A+w_B \). The solution of the problem is reduced to the analytic solution of a functional equation of a special kind.

This is a preview of subscription content, access via your institution.


  1. 1

    V. P. D’yakonov, Maple 10/11/12/13/14 in Mathematical Calculations (DMK-Press, Moscow, 2011) [in Russian].

    Google Scholar 

  2. 2

    L. É. El’gol’ts, Differential Equations and the Calculus of Variations (Nauka, Moscow, 1969; Mir, Moscow, 1970).

    Google Scholar 

  3. 3

    G. M. Fikhtengol’ts, A Course of Differential and Integral Calculus (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  4. 4

    V. A. Kyrov, “Functional equations in pseudo-Euclidean geometry,” Sib. Zh. Ind. Mat. 13:4, 38 (2010).

    MathSciNet  MATH  Google Scholar 

  5. 5

    V. A. Kyrov, “The analytical method for embedding multidimensional pseudo-Euclidean geometries,” Sib. Èlektron. Mat. Izv. 15, 741 (2018).

  6. 6

    V. A. Kyrov, “The embedding of miltidimensional special extensions of pseudo-Euclidean geometries,” Chelyab. Fiz.-Mat. Zh. 3, 408 (2018). DOI: 10.24411/2500-0101-2018-13403.

  7. 7

    V. A. Kyrov, “Analytic embedding of three-dimensional simplicial geometries,” Trudy Inst. Mat. i Mekh. UrO RAN 25(2), 125 (2019).

  8. 8

    V. A. Kyrov and R. A. Bogdanova, “The groups of motions of some three-dimensional maximal mobility geometries,” Sib. Mat. Zh. 59, 412 (2018) [Sib. Math. J. 59, 323 (2018)].

  9. 9

    V. A. Kyrov and G. G. Mikhailichenko, “The analytic method of embedding symplectic geometry,” Sib. Èlektron. Mat. Izv. 14, 657 (2017).

  10. 10

    V. A. Kyrov and G. G. Mikhailichenko, “The analytic method of embedding the Euclidean and pseudo-Euclidean geometries,” Trudy Inst. Mat. i Mekh. UrO RAN 23(2), 167 (2017).

  11. 11

    V. Kh. Lev, “Three-dimensional geometries in the theory of physiical structures,” Vychisl. Sist. 125, 90 (1988) [in Russian].

    MATH  Google Scholar 

  12. 12

    G. G. Mikhailichenko, “Group and phenomenological symmetries in geometry,” Sib. Mat. Zh. 25(5), 99 (1984) [Sib. Math. J. 25, 764 (1984)].

    MathSciNet  Article  Google Scholar 

  13. 13

    G. G. Mikhailichenko, The Mathematical Basics and Results of the Theory of Physical Structures (Gorno-Altaisk Gos. Univ., Gorno-Altaisk, 2016) [in Russian].

    Google Scholar 

  14. 14

    L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York etc., 1982).

    MATH  Google Scholar 

  15. 15

    W. P. Thurston, “Three dimensional manifolds, Kleinian groups and hyperbolic geometry,” Bull. Amer. Math. Soc., New Ser. 6, 357 (1982).

    MathSciNet  Article  Google Scholar 

Download references


The author expresses his sincere gratitude to Professor Gennadiĭ Grigor’evich Mikailichenko for discussing the results.

Author information



Corresponding author

Correspondence to V. A. Kyrov.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kyrov, V.A. The Analytic Embedding of Geometries with Scalar Product. Sib. Adv. Math. 31, 27–39 (2021).

Download citation


  • scalar product
  • functional equation
  • differential equation
  • analytic function