Skip to main content

Non-Uniqueness of Cycles in Piecewise-Linear Models of Circular Gene Networks

Abstract

We find conditions for existence of two cycles for a five-dimensional piecewise-linear dynamical system that models functioning of a circular gene network. Conditions for existence of a cycle were obtained by the authors earlier. The phase portrait of a system is divided into subdomains (or blocks). With the use of such a discretization, we construct a combinatorial scheme for passages of trajectories between blocks. For the second cycle, we show that such a scheme depends on the parameters of a system.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    A. A. Akinshina and V. P. Golubyatnikov, “Geometric characteristics of cycles in some symmetric dynamical systems,” Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 12:2, 3 (2012) [in Russian].

    MATH  Google Scholar 

  2. 2

    N. B. Ayupova and V. P. Golubyatnikov, “On the uniqueness of a cycle in an asymmetric three-dimensional model of a molecular repressilator,” Sib. Zh. Ind. Mat. 17, 3 (2014) [J. Appl. Ind. Math. 8, 153 (2014)].

    MathSciNet  Article  Google Scholar 

  3. 3

    N. B. Ayupova and V. P. Golubyatnikov, “On two classes of nonlinear dynamical systems: the four-dimensional case,” Sib. Matem. Zh. 56, 282 (2015) [Siberian Math. J. 56, 231 (2015)].

    MathSciNet  Article  Google Scholar 

  4. 4

    H. T. Banks and J. M. Mahaffy, “Stability of cyclic gene models for systems involving repression,” J. Theor. Biology 74, 323 (1978).

    MathSciNet  Article  Google Scholar 

  5. 5

    Yu. A. Gaĭdov and V. P. Golubyatnikov, “On some nonlinear dynamical systems modeling asymmetric gene networks,” Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 7:2, 19 (2007) [in Russian].

    MATH  Google Scholar 

  6. 6

    Yu. A. Gaĭdov, V. P. Golubyatnikov, A. G. Kleshchev, and E. P. Volokitin, “Modeling of asymmetric gene networks functioning with different types of regulation,” Biophysics 51, 61 (2006).

    Article  Google Scholar 

  7. 7

    L. Glass and J. S. Pasternack, “Stable oscillations in mathematical models of biological control systems,” J. Math. Biology 6, 207 (1978).

    MathSciNet  Article  Google Scholar 

  8. 8

    V. P. Golubyatnikov, I. V. Golubyatnikov, and V. A. Likhoshvaĭ, “On the existence and stability of cycles in \(5\)-dimensional models of gene networks,” Sib. Zh. Vychisl. Mat. 13, 403 (2010) [Numer. Analysis Appl. 3, 329 (2010)].

    Article  Google Scholar 

  9. 9

    V. P. Golubyatnikov and V. V. Ivanov, “Cycles in the odd-dimensional models of circular gene networks,” Sib. Zh. Ind. Mat. 21, no. 4, 28 (2018) [J. Appl. Ind. Math. 12, 648 (2018)].

    MathSciNet  Article  Google Scholar 

  10. 10

    V. P. Golubyatnikov and V. V. Ivanov, “Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models,” Sib. Zh. Chist. Prikl. Mat. 18:4, 19 (2018) [in Russian].

    MathSciNet  Article  Google Scholar 

  11. 11

    V. P. Golubyatnikov and M. V. Kazantsev, “Piecewise linear dynamical system modeling gene network with variable feedback,” Sib. Zh. Chist. Prikl. Mat. 16, no. 4, 28 (2016) [J. Math. Sci., New York 230, 46 (2018)].

    Article  Google Scholar 

  12. 12

    S. Hastings, J. Tyson, and D. Webster, “Existence of periodic solutions for negative feedbacks cellular control systems,” J. Differ. Equations 25, 39 (1977).

    MathSciNet  Article  Google Scholar 

  13. 13

    M. V. Kazantsev, “On some properties of the domain graphs of dynamical systems,” Sib. Zh. Ind. Mat. 18:4, 42 (2015) [in Russian].

    MathSciNet  MATH  Google Scholar 

  14. 14

    A. Yu. Kolesov, N. Kh. Rozov, and V. A. Sadovnichiĭ, “Periodic solutions of travelling-wave type in circular gene networks,” Izv. Ross. Akad. Nauk, Ser. Mat. 80, no. 3, 67 (2016) [Izv. Math. 80, 523 (2016)].

    MathSciNet  Article  Google Scholar 

  15. 15

    A. G. Kurosh, A Course in Higher Algebra (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  16. 16

    V. A. Likhoshvaĭ, S. I. Fadeev, V. V. Kogaĭ, and T. M. Khlebodarova, “On the chaos in gene networks,” J. Bioinform. Comput. Biology 11:1, 1340009 (2013).

    Article  Google Scholar 

  17. 17

    G. Yu. Riznichenko, Lectures on Mathematical Models in Biology, (Scientific Research Center “Regular and Chaotic Dynamics”, Moscow–Izhevsk, 2002) [in Russian].

    Google Scholar 

  18. 18

    S. Tabachnikov, Geometry and Billiards (Amer. Math. Soc., Providence, RI, 2005).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to V. V. Ivanov for useful discussions and to the anonymous referee for her/his critical remarks.

Funding

The work was partially supported by the Russian Foundation for Basic Research (project 18-01-00057) and the Program of Fundamental Scientific Research of the SB RAS no. I.1.5 (project 0314-2018-0011).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to V. P. Golubyatnikov or V. S. Gradov.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golubyatnikov, V.P., Gradov, V.S. Non-Uniqueness of Cycles in Piecewise-Linear Models of Circular Gene Networks. Sib. Adv. Math. 31, 1–12 (2021). https://doi.org/10.1134/S1055134421010016

Download citation

Keywords

  • nonlinear dynamical systems
  • phase portraits
  • invariant domains
  • valency of a block
  • cycles