Skip to main content
Log in

On the Work of the Institute of Control Sciences of the Russian Academy of Sciences in the Field of Pattern Recognition Theory and Applications in the 20th Century

  • SCIENTIFIC SCHOOLS OF THE V.A. TRAPEZNIKOV INSTITUTE OF CONTROL SCIENCES OF THE RUSSIAN ACADEMY OF SCIENCES, MOSCOW, THE RUSSIAN FEDERATION
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

Brief historical background on the establishment and activities of the Institute of Control Sciences (IPU RAS). The paper presents key findings of the Institute (obtained mainly in the 20th century) in the field of pattern recognition and of related analysis of complex data. It focuses on four areas of research including (a) the method of potential functions, (b) the theory of learning and self-learning systems, (c) the generalized portrait method and recovery of dependences based on empirical data, and (d) automatic classification methods and expert classification analysis. Relations between these areas are studied. The pioneers in the field are named (M.A. Aizerman, E.M. Braverman, L.I. Rozonoer, Ya.Z. Tsypkin, V.N. Vapnik, A.Ya. Chervonenkis, I.B. Muchnik, and A.A. Dorofeyuk among others) and brief biographical notes on the life and scientific work of these scientists are presented. The follow-ups of the results thus obtained are shown. The bibliography of publications by the Institute’s researchers in leading journals of Russia on pattern recognition problems and related complex data analysis tasks is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. F. A. Ajdu and V. N. Vapnik, “Estimation of probability density on the basis of the method of stochastic regularization,” Autom. Remote Control 50 (4), 499–509 (1989).

    Google Scholar 

  2. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Probability problem of pattern recognition learning and potential functions method,” Avtom. Telemekh. 25, 1307–1323 (1964).

    Google Scholar 

  3. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Method of potential functions in the problem on restoration of functional converter characteristic by means of points observed randomly,” Avtom. Telemekh. 25, 1705–1714 (1964).

    Google Scholar 

  4. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, Potential Function Method in Theory of Machine Learning (Nauka, Moscow, 1970).

    Google Scholar 

  5. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “The choice of potential function in symmetric spaces,” Autom. Remote Control 1967, 1520–1550 (1967).

    MathSciNet  Google Scholar 

  6. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “The Robbins–Monro process and the potential functions method,” Avtom. Telemekh. 26, 1951–1954 (1965).

    Google Scholar 

  7. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical foundation of potential functions method in pattern recognition,” Avtom. Telemekh. 25, 917–936 (1964).

    Google Scholar 

  8. V. P. Andreev, G. G. Vainshtein, M. G. Egi, N. V. Zavalishin, I. B. Muchnik, and R. L. Sheinin, “Image analysis for three-dimensional scenes through their texture properties,” Avtom. Telemekh., No. 1, 164–173 (1976).

  9. A. M. Anokhin and V. G. Grishin, “On representation of phase information in problems of visual analysis and on recognition of complex acoustic signals by operator,” Avtom. Telemekh., No. 3, 177–182 (1970).

  10. A. M. Anokhin and V. G. Grishin, “Errors of analog methods in dynamical spectroscopy,” Avtom. Telemekh., No. 10, 172–177 (1975).

  11. A. M. Anokhin, V. G. Grishin, and B. S. Shkrabov, “Investigation of connections between acoustic emission of jet flip-flops and their operational parameters,” Avtom. Telemekh., No. 2, 156–161 (1968).

  12. A. G. Arkad’ev and E. M. Braverman, Machine Learning of Pattern Recognition (Nauka, Moscow, 1964).

    Google Scholar 

  13. A. G. Arkad’ev and E. M. Braverman, Machine Learning of Object Classification (Nauka, Moscow, 1971).

    Google Scholar 

  14. N. Aronshain, “Theory of reproducing kernels,” Matematika 7 (2), 67–130 (1981).

    Google Scholar 

  15. P. O. Aven, N. E. Kiseleva, and I. B. Muchnik, “Approximation of data matrix by overlapping blocks,” Autom. Remote Control 41, 1144–1153 (1980).

    Google Scholar 

  16. A. N. Bagrov, V. N. Vapnik, and A. I. Snitkovskii, “To the prediction of dangerous weather phenomena,” Meteorol. Gidrol., No. 3, 35–43 (1974).

  17. P. Bartlett and J. Shawe-Taylor, “Generalization performance of support vector machines and other pattern classifiers,” in Advances in Kernel Methods: Support Vector Learning, Ed. by Ch. J. C. Burges, B. Schölkopf, and A. J. Smola (The MIT Press, Cambridge, Mass., 1998). https://doi.org/10.7551/mitpress/1130.003.0007

  18. O. A. Bashkirov, E. M. Braverman, and I. B. Muchnik, “Algorithms for teaching a machine to recognize visual patterns based on potential function usage,” Avtom. Telemekh. 25, 692–695 (1964).

    Google Scholar 

  19. E. V. Bauman, “Studying the convergence of an algorithm class of automatic classification,” in Modeling and Control in Developing Systems (Nauka, Moscow, 1978).

    Google Scholar 

  20. E. V. Bauman, “Fuzzy classification methods (a variational approach),” Autom. Remote Control 49, 1650–1661 (1988).

    MathSciNet  Google Scholar 

  21. E. V. Bauman and A. A. Dorofeyuk, “Variational approach to the problem of automatic classification for a class of additive functionals,” Autom. Remote Control 39, 1211–1219 (1978).

    MathSciNet  Google Scholar 

  22. E. V. Bauman and A. A. Dorofeyuk, “Recursive automatic classification algorithms,” Autom. Remote Control 43, 345–355 (1982).

    MathSciNet  Google Scholar 

  23. E. V. Bauman and A. A. Dorofeyuk, “Classification data analysis,” in Selected Works of Int. Conf. on Control Problems (Sinteg, Moscow, 1999), Vol. 1, pp. 62–77.

  24. E. V. Bauman, A. A. Dorofeyuk, Yu. A. Dorofeyuk, and N. E. Kiseleva, “Program-algorithmic complex of structural-classification analysis of complexly organized data,” Tavricheskii Vestn. Informatiki Mat., No. 1, 66–72 (2008).

  25. E. V. Bauman, A. A. Dorofeyuk, Yu. A. Dorofeyuk, and N. E. Kiseleva, “Global-optimal algorithms of classification analysis of complexly organized data,” in 4th Int. Conf. on Control Problems: Collection of Works (Inst. Probl. Upravleniy Ross. Akad. Nauk, Moscow, 2009), pp. 344–349.

  26. E. V. Bauman, A. A. Dorofeyuk, Yu. A. Dorofeyuk, N. E. Kiseleva, and A. L. Chernyavskii, “Human-machine system Analitika, an implementation of the method for structural analysis of complexly organized data for problems of controlling the large-scale regional systems,” in Controlling the Development of Large-Scale Systems (MLSD-2007): Proc. 1st Int. Conf. (Inst. Probl. Upravleniy Ross. Akad. Nauk, Moscow, 2007), pp. 193–202.

  27. E. V. Bauman, A. A. Dorofeyuk, and G. V. Kornilov, “Optimal piecewise-linear approximation algorithms for complex dependencies,” Autom. Remote Control 65, 1667–1674 (2004). https://doi.org/10.1023/b:aurc.0000044275.62735.a9

    Article  MathSciNet  Google Scholar 

  28. E. V. Bauman and I. B. Muchnik, “An algorithm for restructuring in the problem of graph approximation,” Autom. Remote Control 37, 920–927 (1976).

    Google Scholar 

  29. E. V. Bauman and I. B. Muchnik, “Simplification of graph structure with the aid of boolean matrices,” Autom. Remote Control 44, 1461–1469 (1983).

    MathSciNet  Google Scholar 

  30. V. I. Borisenko, A. A. Zlatopol’skiy, and I. B. Muchnik, “Image segmentation: the state-of-art,” Avtom. Telemekh., No. 7, 3–56 (1987).

  31. E. M. Braverman, “Some design problems of machine classifying elements according to signs unknown beforehand,” Avtom. Telemekh. 21, 1375–1386 (1960).

    Google Scholar 

  32. E. M. Braverman, “Experiments on training machine to distinguish visual shapes,” Avtom. Telemekh. 23, 349–364 (1962).

    Google Scholar 

  33. E. M. Braverman, “The potential functions method in the problem of teaching the machine the images recognition without teacher,” Avtom. Telemekh., No. 10, 100–121 (1966).

  34. E. M. Braverman, “To the paper by E.M. Braverman ‘The potential functions method in the problem of teaching the machine the images recognition without teacher’ (Avtomatika i Telemekhanika, No. 10, 1966),” Avtom. Telemekh., No. 6, 159 (1967).

  35. E. M. Braverman, “On the potential functions method,” Avtom. Telemekh. 26, 2205–2213 (1965).

    Google Scholar 

  36. E. M. Braverman, “Methods of extremal grouping of parameters and problem of apportionment of essential factors,” Avtom. Telemekh., No. 1, 123–132 (1970).

  37. E. M. Braverman and A. A. Dorofeyuk, “Experiments on teaching a machine to unsupervised pattern recognition,” in Self-Service Automatic Systems: Proc. 1st All-Union Conf. on the Theory and Practice of Constructing Self-Adjustment Systems (Nauka, Moscow, 1966).

  38. E. M. Braverman, N. Ye. Kiseleva, I. B. Muchnik, and S. G. Novikov, “A linguistical approach to processing large data arrays,” Avtom. Telemekh., No. 11, 73–88 (1974).

  39. E. M. Braverman, B. M. Litvakov, I. B. Muchnik, and S. G. Novikov, “Stratified sampling in the organization of empirical data collection,” Autom. Remote Control 36, 1629–1641 (1975).

    MathSciNet  Google Scholar 

  40. E. M. Braverman and I. B. Muchnik, Structural Methods for Processing Empirical Data (Nauka, Moscow, 1983).

    Google Scholar 

  41. E. M. Braverman, I. B. Muchnik, and A. L. Chernyavskij, “Approximate approach to the solution of systems of structural regression equations,” Autom. Remote Control 39, 1677–1685 (1978).

    Google Scholar 

  42. Eh. M. Braverman and E. S. Pyatnitskij, “Estimation of the rate of convergence of algorithms based on the potential functions method,” Avtom. Telemekh., No. 1, 95–112 (1966).

  43. E. M. Braverman and L. I. Rozonoer, “Convergence of random processes in the theory of learning machines. I,” Autom. Remote Control 1969, 44–64 (1969).

    MathSciNet  Google Scholar 

  44. E. M. Braverman and L. I. Rozonoer, “Convergence of random processes in the theory of learning machines. II,” Autom. Remote Control 1969, 386–402 (1969).

    MathSciNet  Google Scholar 

  45. E. M. Braverman and L. I. Rozonoer, “Concerning the article: “Convergence of random processes in machine learning theory. I” (Automation and Remote Control, No. 1, 1969),” Avtom. Telemekh., No. 2, 182 (1970).

  46. A. N. Bugaets, A. A. Dorofeyuk, A. P. Matsak, and L. L. Serova, “Utilization of automatic classification algorithms for systematization of minerals,” Avtom. Telemekh., No. 6, 119–122 (1968).

  47. A. L. Chernyavskii and I. V. Pokrovskaya, “Methods of data classification analysis in problem of estimating the social development of regions,” in Artificial Intelligence (Iskusstvennyi Intellekt, Donetsk, 2006), pp. 343–346.

    Google Scholar 

  48. A. Ya. Chervonenkis, “On some properties of classes of events for which the conditions for the uniform convergence of the relative frequencies to probabilities fail to hold,” Izv.: Math. 76, 1271–1285 (2012). https://doi.org/10.1070/IM2012v076n06ABEH002624

    Article  MathSciNet  Google Scholar 

  49. A. A. Desova, A. A. Dorofeyuk, V. V. Guchuk, Yu. A. Dorofeyuk, and I. V. Pokrovskaya, “Classified analysis procedures in the problem of formation of informative signs in investigation of the rhythmic structure of a biosignal,” Autom. Remote Control 69, 1035–1044 (2008). https://doi.org/10.1134/s0005117908060131

    Article  MathSciNet  Google Scholar 

  50. A. A. Desova, A. A. Dorofeyuk, D. Yu, and Maksimov, “Mobile computer system of registering, processing, and storing pulse signals,” Datchiki Sist., No. 4, 29–34 (2008).

  51. A. A. Desova, V. V. Guchuk, I. V. Pokrovskaya, and A. A. Dorofeyuk, “Intelligent analysis of quasiperiodic bioosignals in medical diagnostic problems (with the example of a pulse signal),” Autom. Remote Control 79, 1953–1962 (2018). https://doi.org/10.1134/S0005117918110012

    Article  Google Scholar 

  52. I. P. Devyaterikov, A. I. Kaplinskij, and Ya. Z. Tsypkin, “Convergence of learning algorithms,” Autom. Remote Control 1969, 1619–1626 (1969).

    MathSciNet  Google Scholar 

  53. I. P. Devjaterikov, A. I. Propoi, and J. Z. Cypkin, “Iterative (learning) algorithms for pattern recognition,” Avtom. Telemekh., No. 1, 122–132 (1967).

  54. A. G. Dmitriev and A. A. Dorofeyuk, “Piecewise-approximation methods for multidimensional curves,” Autom. Remote Control 45, 1622–1628 (1984).

    Google Scholar 

  55. A. A. Dorofeyuk, “Algorithms of teaching the machine the pattern recognition without teacher based on the method of potential functions,” Avtom. Telemekh., No. 10, 78–87 (1966).

  56. A. A. Dorofeyuk, “Algorithms of teaching a machine to unsupervisedly recognize patterns based on potential function method,” in Question of the Technical Cybernetics (Nauka, Moscow, 1968).

    Google Scholar 

  57. A. A. Dorofeyuk, “Algorithms of automatic classification (review),” Avtom. Telemekh., No. 12, 78–113 (1971).

  58. A. A. Dorofeyuk, E. V. Bauman, Yu. A. Dorofeyuk, and A. L. Chernyavskii, “Recurrent algorithms of structural classification analysis for complex organized information,” Autom. Remote Control 79, 1854–1862 (2018). https://doi.org/10.1134/s0005117918100090

    Article  MathSciNet  Google Scholar 

  59. A. A. Dorofeyuk and Yu. A. Dorofeyuk, “Metody strukturno-klassifikatsionnogo prognozirovaniya mnogomernykh dinamicheskikh ob,” Iskusstvennyi Intellekt, No. 2, 138–141 (2006).

  60. A. A. Dorofeyuk, Yu. A. Dorofeyuk, I. V. Pokrovskaya, and A. L. Chernyavskii, “Independent of multivariant expertise in problems of studying weakly formalized control systems,” Mash. Obuchenie Anal. Dannykh 1 (8), 1077–1088 (2014).

    Google Scholar 

  61. A. A. Dorofeyuk, M. D. Gol’dovskaya, N. E. Kiseleva, I. V. Pokrovskaya, A. G. Spiro, and A. L. Chernyavskii, “Procedures of collective multivariant expertise in problems of analysis and improvement of social-economic control systems,” Inf. Tekhnol. Vychisl. Sist., No. 4, 53–68 (2016).

  62. A. A. Dorofeyuk, Sh. D. Ibragimli, and V. G. Movsumov, “Use of the criterion of statistical equivalence of models in a piecewise approximation problem,” Autom. Remote Control 37, 1069–1072 (1976).

    Google Scholar 

  63. A. A. Dorofeyuk, A. D. Kasavin, and A. D. Torgovitskii, “Application of methods of automatic classification for construction of object static model,” Avtom. Telemekh., No. 1, 144–147 (1970).

  64. A. A. Dorofeyuk, I. V. Pokrovskaya, and A. L. Chernyavkii, “Expert methods to analyze and perfect management systems,” Autom. Remote Control 65, 1675–1688 (2004). https://doi.org/10.1023/b:aurc.0000044276.99273.a0

    Article  Google Scholar 

  65. J. A. Dorofeyuk, “Structurally-classification methods for analysis and forecasting in large-scale control systems,” Probl. Upr., No. 4, 78–83 (2008).

  66. Yu. A. Dorofeyuk, “Classification methods of predicting multidimensional dynamical control systems under uncertainty conditions,” in 4th Int. Conf. on Control Problems: Collection of Sci. Works (Inst. Problem Upravleniya Ross. Akad. Nauk, Moscow, 2009), pp. 380–384.

  67. Yu. A. Dorofeyuk, “Improvement of the decision-making methods using the algorithm of adaptive structural forecasting,” in Theory of Active Systems: Proc. Int. Sci.-Pract. Conf. (Inst. Problem Upravleniya Ross. Akad. Nauk, Moscow, 2009), Vol. 1, pp. 241–245.

  68. Yu. A. Dorofeyuk, “Complex of algorithms of expert-classification analysis for solving applied problems,” in 4th Int. Conf. on Control Problems: Collection of Sci. Works (Inst. Problem Upravleniya Ross. Akad. Nauk, Moscow, 2009), pp. 373–379.

  69. Yu. A. Dorofeyuk, “Methods of adaptive structural forecasting,” Inf. Tekhnol. Vychisl. Sist., No. 10, 34–39 (2010).

  70. Yu. A. Dorofeyuk, E. V. Bauman, and A. A. Dorofeyuk, “Methods of structural-classification analysis based on procedures of stochastic approximation,” in Control of Large-Scale System Development (MLSD-2008): Proc. 2nd Int. Conf. (Inst. Problem Upravleniya Ross. Akad. Nauk, Moscow, 2008), pp. 192–200.

  71. Yu. A. Dorofeyuk and A. A. Dorofeyuk, “Structural-classification forecasting of dynamical objects,” in 3rd Int. Conf. on Control Problems: Plenary Papers and Selected Works (Inst. Problem Upravleniya Ross. Akad. Nauk, Moscow, 2006), pp. 369–372.

  72. Yu. A. Dorofeyuk, V. A. Laptin, and A. S. Mandel, “Estimating the parameters of queuing systems with channel switching,” Autom. Remote Control 82, 1886–1891 (2021). https://doi.org/10.1134/S0005117921110047

    Article  Google Scholar 

  73. Yu. A. Dorofeyuk and A. S. Mandel’, “Structural-classification methodology for estimating the efficiency of functioning of housing and public utilities of a large city (on example of Moscow),” Probl. Upr., No. 4, 6–13 (2010).

  74. I. V. Gaponenko and I. B. Muchnik, “Construction of decision rules in pattern recognition problems utilizing expert information,” Autom. Remote Control 53, 1237–1243 (1992).

    Google Scholar 

  75. A. V. Genkin and I. B. Muchnik, “Optimum algorithm for maximization of submodular functions,” Autom. Remote Control 51, 1121–1128 (1990).

    Google Scholar 

  76. E. G. Gladyshev, “On stochastic approximation,” Theory Probab. Its Appl. 10, 275–278 (1965). https://doi.org/10.1137/1110031

    Article  Google Scholar 

  77. T. G. Glazkova, K. N. Gurarii, S. I. Danilenko, et al., “Possibilities of applying a computer for clinical X-ray differential diagnostics of cancer and noncancerous lesion of esophagus,” Vestn. Radiologii Rentgenologii, No. 2 (1971).

  78. S. Yu. Glaz’ev, A. A. Dorofeyuk, R. M. Nizhegorodtsev, A. L. Chernyavskii, et al., Market Teaching (Ekonomika, Moscow, 2005).

    Google Scholar 

  79. Yu. V. Goncharov, I. B. Muchnik, and L. V. Shvartser, “Feature selection algorithm in classification learning using support vector machines,” Comput. Math. Math. Phys. 48, 1243–1260 (2008). https://doi.org/10.1134/S0965542508070154

    Article  MathSciNet  Google Scholar 

  80. E. V. Gorenkov, A. A. Dorofeyuk, and I. M. Zhitkikh, “Application of automatic classification method for individual prognosis of longevity of powerful clystrons,” Avtom. Telemekh., No. 1, 78–81 (1969).

  81. V. G. Grishin, “On some properties of a class of image-to-sound conversion,” Avtom. Telemekh., No. 8, 149–151 (1966).

  82. V. G. Grishin, “Dynamic spectroscopy in problems of visual analysis and identification of compound acoustic signals by an operator,” Avtom. Telemekh., No. 2, 144–149 (1967).

  83. The Franklin Institute Awards: Laureates Search. https://www.fi.edu/laureates-search

  84. T. O. Ivanova, V. V. Mottl’, and I. B. Muchnik, “Estimation of the parameters of hidden Markov models of noise-like signals with abruptly changing probabilistic properties. I: Structure of a model and estimation of its quantitative parameters,” Autom. Remote Control 55, 1299–1315 (1994).

    Google Scholar 

  85. T. O. Ivanova, V. V. Mottl’, and I. B. Muchnik, “Estimation of the parameters of hidden Markov models of noiselike signals with abruptly changing probabilistic properties. II: Estimation of the structural parameters of the model,” Autom. Remote Control 55, 1428–1445 (1994).

    Google Scholar 

  86. Institute of Control Sciences: 80 Years (Inst. Probl. Upravleniya Ross. Akad. Nauk, Moscow, 2019).

  87. J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regression function,” Ann. Math. Stat. 23, 462–466 (1952). https://doi.org/10.1214/aoms/1177729392

    Article  MathSciNet  Google Scholar 

  88. N. E. Kiseleva, I. B. Muchnik, and S. G. Novikov, “Stratified samples in the problem of type representatives,” Avtom. Telemekh., No. 5, 108–117 (1986).

  89. P. I. Kuznetsov and I. B. Muchnik, “Structural methods of analyzing organisational systems,” Avtom. Telemekh., No. 5, 5–27 (1983).

  90. E. N. Kuznetsov, I. B. Muchnik, and L. V. Shvartser, “Local transformations of monotone systems. I. The problem of kernel correction in a monotone system,” Avtom. Telemekh., No. 12, 85–95 (1985).

  91. E. N. Kuznetsov, I. B. Muchnik, and L. V. Shvartser, “Local transformations of monotone systems. II. Algorithms for local transformations of monotone systems,” Avtom. Telemekh., No. 1, 116–125 (1986).

  92. L. O. Libkin, I. B. Muchnik, and L. V. Shvartser, “Quasilinear monotone systems,” Autom. Remote Control 50, 1249–1259 (1989).

    MathSciNet  Google Scholar 

  93. V. Ya. Lumel’sky, “Grouping of parameters on basis of communication matrice,” Avtom. Telemekh., No. 1, 133–143 (1970).

  94. A. S. Mandel’, A. A. Dorofeyuk, Yu. A. Dorofeyuk, A. L. Chernyavskii, and D. Yu. Levin, “Modern requirements to safety of railway transport and intellectual analysis methods in the problem of constructing the expert-analytical model for forecasting the state of railway tracks and right-of-way,” Upr. Bol’shimi Sist., No. 38, 51–64 (2012).

  95. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull. Math. Biophys. 5, 115–133 (1943). https://doi.org/10.1007/bf02478259

    Article  MathSciNet  Google Scholar 

  96. A. I. Mihal’skii, “The method of averaged splines in the problem of approximating dependences on the basis of empirical data,” Autom. Remote Control 35, 382–386 (1974).

    Google Scholar 

  97. A. I. Mikhal’skii, “Restoration of statistical dependences by averaged splines,” USSR Comput. Math. Math. Phys. 19, 18–28 (1979). https://doi.org/10.1016/0041-5553(79)90094-6

    Article  Google Scholar 

  98. A. I. Mikhal’skii and A. Ya. Chervonenkis, “Application of the machine learning methods for short-term forecasting of load in power systems,” in Proc. Conf. of the Trapeznikov Institute of Control Sciences Control of Large-Scale Systems Development MLSD'2007, Moscow, 2007 (Inst. Probl. Upravleniya Ross. Akad. Nauk, Moscow, 2007), p. 131.

  99. A. I. Mikhalskii, I. V. Petrov, V. V. Tsurko, A. A. Anashkina, and A. N. Nekrasov, “Application of mutual information estimation for predicting the structural stability of pentapeptides,” Russ. J. Numer. Anal. Math. Modell. 35, 263–271 (2020). https://doi.org/10.1515/rnam-2020-0022

    Article  MathSciNet  Google Scholar 

  100. I. Miller, V. N. Vapnik, and T. G. Glazkova, “Ranking of drugs for clinical tests,” in Experimental Estimation of Antitumour Drugs in Soviet Union and United States (Meditsina, Moscow, 1980), pp. 184–213.

    Google Scholar 

  101. V. V. Mottl and I. B. Muchnik, “An algorithm for recognition of a flow of random events,” Avtom. Telemekh., No. 2, 142–146 (1986).

  102. V. V. Mottl’ and I. B. Muchnik, “Deterministic models and methods of pattern recognition on the time axis. I: Basic models and solvability of the classification problem,” Autom. Remote Control 52, 398–407 (1991).

    Google Scholar 

  103. V. V. Mottl’ and I. B. Muchnik, “Deterministic models and methods of pattern recognition on the time axis. II: Classification algorithms,” Autom. Remote Control 52, 555–559 (1991).

    Google Scholar 

  104. V. V. Mottl’ and I. B. Muchnik, “Deterministic models and methods of pattern recognition on the times axis. III: Learning algorithm,” Autom. Remote Control 52, 719–725 (1991).

    Google Scholar 

  105. V. V. Mottl’, I. B. Muchnik, and V. G. Yakovlev, “Algorithmic implementation of a linguistic approach to analysis of experimental curves,” Autom. Remote Control 45, 417–433 (1984).

    Google Scholar 

  106. V. V. Mottl’, I. B. Muchnik, and V. G. Yakovlev, “Optimal segmentation of experimental curves,” Avtom. Telemekh., No. 8, 84–95 (1983).

  107. V. V. Mottl’ and I. B. Muchnik, “Segmentation of structural curves using dynamic programming methods,” Autom. Remote Control 46, 88–94 (1985).

    Google Scholar 

  108. I. B. Muchnik, “Algorithms of formation of local features for visual patterns,” Avtom. Telemekh., No. 10, 88–99 (1966).

  109. I. B. Muchnik, “Structure analysis of experimental graphs,” Avtom. Telemekh., No. 9, 62–80 (1974).

  110. I. B. Muchnik, “Simulation of the process of forming a language for the description and analysis of image shapes,” Autom. Remote Control 1971, 1219–1226 (1971).

    Google Scholar 

  111. I. B. Muchnik and R. B. Muchnik, “Algorithms for formation of a language for description of experimental curves,” Avtom. Telemekh., No. 5, 86–98 (1973).

  112. I. B. Muchnik and A. A. Oslon, “Methods of construction of an integral index in data analysis,” Autom. Remote Control 45, 1247–1261 (1984).

    Google Scholar 

  113. I. B. Muchnik and A. A. Oslon, “Construction of a factor approximating the connection matrix,” Autom. Remote Control 41, 509–515 (1980).

    MathSciNet  Google Scholar 

  114. I. B. Muchnik, E. I. Pamorozskij, and R. I. Ehl’man, “Automatic processing of halftone images (state-of-the-art survey),” Autom. Remote Control 42, 199–230 (1981).

    Google Scholar 

  115. I. B. Muchnik, N. F. Chkuaseli, and L. V. Shvartser, “Linguistic analysis of 0-1 matrices using monotone systems,” Autom. Remote Control 47, 553–560 (1986).

    Google Scholar 

  116. I. B. Muchnik and L. V. Shvartser, “Submodular functions of sets and monotone systems in aggregation problems,” Avtom. Telemekh., No. 5, 135–148 (1987).

  117. I. B. Muchnik and L. V. Shvartser, “Submodular functions of sets and monotone systems in aggregation problems. II,” Avtom. Telemekh., No. 6, 138–147 (1987).

  118. I. B. Muchnik and L. V. Shvartser, “Nuclei of monotonic systems on a semilattice of sets,” Autom. Remote Control 50 (8), 1095–1102 (1989).

    Google Scholar 

  119. I. B. Muchnik and L. V. Shvartser, “Maximization of generalized characteristics of functions of monotone systems,” Autom. Remote Control 51, 1562–1572 (1990).

    MathSciNet  Google Scholar 

  120. I. B. Muchnik and P. M. Snegirev, “Algorithm to estimate the approximation accuracy of an empirical dependence,” Autom. Remote Control 47, 1116–1124 (1986).

    Google Scholar 

  121. I. B. Muchnik and P. M. Snegirev, “Accuracy estimate of a linear regression model,” Autom. Remote Control 51 (2), 247–254 (1990).

    Google Scholar 

  122. I. B. Muchnik and N. V. Zavalishin, Models of Visual Perception of Images (Nauka, Moscow, 1974).

    Google Scholar 

  123. A. S. Nemirovskij and Ya. Z. Tsypkin, “Optimal adaptive control algorithms,” Autom. Remote Control 45, 1589–1600 (1984).

    Google Scholar 

  124. I. Nouretdinov, S. G. Costafreda, A. Gammerman, A. Chervonenkis, V. Vovk, V. Vapnik, and C. H. Y. Fu, “Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression,” NeuroImage 56, 809–813 (2011). https://doi.org/10.1016/j.neuroimage.2010.05.023

    Article  PubMed  Google Scholar 

  125. A. V. J. Novikoff, “On convergence proofs for perceptrons,” in Report at the Symposium on Mathematical Theory of Automata (Polytech. Inst. Brooklin, New York, 1962), pp. 24–26.

  126. B. T. Polyak and Ya. Z. Tsypkin, “Adaptive estimation algorithms (convergence, optimality, stability),” Autom. Remote Control 40, 378–389 (1979).

    MathSciNet  Google Scholar 

  127. H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Stat. 22, 400–407 (1951). https://doi.org/10.1214/aoms/1177729586

    Article  MathSciNet  Google Scholar 

  128. F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain.,” Psychol. Rev. 65, 386–408 (1958). https://doi.org/10.1037/h0042519

    Article  CAS  PubMed  Google Scholar 

  129. F. Rosenblatt, Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms (Spartan Books, 1962).

    Google Scholar 

  130. L. I. Rozonoer, “Certain hypotheses in optimal control theory and the relationship of the maximum principle with the dynamic programming method,” Autom. Remote Control 64, 1237–1240 (2003). https://doi.org/10.1023/A:1025019130724

    Article  MathSciNet  Google Scholar 

  131. L. I. Rozonoer, “Pontrjagin maximum principle in the theory of optimum systems. I,” Avtom. Telemekh. 20, 1320–1334 (1959).

    Google Scholar 

  132. L. I. Rozonoer, “Pontrjagin maximum principle in the theory of optimum systems. II,” Avtom. Telemekh. 20, 1441–1458 (1959).

    Google Scholar 

  133. L. I. Rozonoer, “Pontrjagin maximum principle in the theory of optimum systems. III,” Avtom. Telemekh. 20, 1561–1578 (1959).

    Google Scholar 

  134. Ya. Z. Tsypkin, “Adaptation, learning and selflearning in automatic systems,” Avtom. Telemekh., No. 1, 23–61 (1966).

  135. Ya. Z. Tsypkin, Adaptation and Learning in Automatic Systems (Nauka, Moscow, 1968).

    Google Scholar 

  136. Ya. Z. Tsypkin, “Concerning the book by K. S. Fu ‘Sequential Methods in Pattern Recognition and Machine Learning.’ Academic Press, New York and London, 1968,” Avtom. Telemekh., No. 8, 197 (1969).

  137. Ya. Z. Tsypkin, “Generalized algorithms of learning,” Avtom. Telemekh., No. 1, 97–104 (1970).

  138. Ya. Z. Tsypkin, Fundamentals of the Theory of Learning Systems (Nauka, Moscow, 1970).

    Google Scholar 

  139. Ya. Z. Tsypkin, “Adaptive optimization algorithms when there is a priori uncertainty,” Autom. Remote Control 40, 857–868 (1979).

    MathSciNet  Google Scholar 

  140. Ya. Z. Tsypkin, “Optimal performance criteria in identification problems,” Autom. Remote Control 43, 1365–1382 (1982).

    Google Scholar 

  141. Ya. Z. Tsypkin, “Optimal parameter estimation algorithms in identification problems,” Autom. Remote Control 43 (12), 1505–1517 (1982).

    MathSciNet  Google Scholar 

  142. Ya. Z. Tsypkin, Information Theory of Identification (Nauka, Moscow, 1995). https://doi.org/10.30898/1684-1719.2021.6.15

    Book  Google Scholar 

  143. Ya. Z. Tsypkin and G. K. Kel’mans, “Recurrent algorihms of self-learning,” Tekh. Kibern., No. 5 (1967).

  144. V. V. Tsurko and A. Mikhalskii, “Evaluation of statistical relationship of random variables via mutual information,” Autom. Remote Control 83, 734–742 (2022). https://doi.org/10.1134/S000511792205006X

    Article  MathSciNet  Google Scholar 

  145. G. G. Vainstein, N. V. Zavalishin, and I. B. Muchnik, “Visual information processing by robots (survey),” Autom. Remote Control 35, 959–986 (1974).

    Google Scholar 

  146. V. N. Vapnik, Restoration of Dependences by Empirical Data (Nauka, Moscow, 1979).

    Google Scholar 

  147. V. N. Vapnik, “Complete statistical theory of learning,” Autom. Remote Control 80, 1949–1975 (2019). https://doi.org/10.1134/S000511791911002X

    Article  MathSciNet  Google Scholar 

  148. V. N. Vapnik and A. Ya. Chervonenkis, “On a perceptron class,” Avtom. Telemekh. 25, 112–120 (1964).

    MathSciNet  Google Scholar 

  149. V. N. Vapnik and A. Ya. Chervonenkis, “A class of algorithms for pattern recognition learning,” Avtom. Telemekh. 25, 937–945 (1964).

    MathSciNet  Google Scholar 

  150. V. N. Vapnik and A. Ya. Chervonenkis, “Algorithms with complete memory and recurrent algorithms in pattern recognition learning,” Autom. Remote Control 1968, 606–616 (1968).

    MathSciNet  Google Scholar 

  151. V. N. Vapnik and A. Ya. Chervonenkis, “Asymptotic properties of the method of ordered minimization,” Autom. Remote Control 36, 1986–1999 (1975).

    Google Scholar 

  152. V. N. Vapnik and A. Ya. Chervonenkis, “Training automata in zero-sum games,” Autom. Remote Control 1967, 1094–1099 (1967).

    Google Scholar 

  153. V. N. Vapnik and A. Ya. Chervonenkis, “Training automata to extremal imitation. I,” Autom. Remote Control 27, 852–863 (1966).

    Google Scholar 

  154. V. N. Vapnik and A. Ya. Chervonenkis, “Training automata to extremal imitation. II,” Autom. Remote Control 27, 1041–1053 (1966).

    Google Scholar 

  155. V. N. Vapnik and A. Ya. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Dokl. Akad. Nauk SSSR 181, 781–783 (1968).

    MathSciNet  Google Scholar 

  156. V. N. Vapnik and A. Ya. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Theory Probab. Its Appl. 16, 264–280 (1971). https://doi.org/10.1137/1116025

    Article  Google Scholar 

  157. V. N. Vapnik and A. Ya. Chervonenkis, “Theory of uniform convergence of frequencies of events to their probabilities and problems of search for an optimal solution from empirical data,” Autom. Remote Control 1971, 207–217 (1971).

    MathSciNet  Google Scholar 

  158. V. N. Vapnik and Ya. A. Chervonenkis, “Ordered risk minimization. I,” Autom. Remote Control 35, 1226–1235 (1974).

    MathSciNet  Google Scholar 

  159. V. N. Vapnik and A. Ya. Chervonenkis, “On the method of ordered risk minimization. II,” Avtom. Telemekh., No. 9, 29–39 (1974).

  160. V. N. Vapnik and A. Ya. Chervonenkis, Theory of Pattern Recognition (Nauka, Moscow, 1974).

    Google Scholar 

  161. V. N. Vapnik and A. Ya. Chervonenkis, “Necessary and sufficient conditions for the uniform convergence of means to their expectations,” Theory Probab. Its Appl. 26, 532–553 (1982). https://doi.org/10.1137/1126059

    Article  Google Scholar 

  162. V. N. Vapnik and A. Ya. Chervonenkis, “Necessary and sufficient conditions of substantiality of the method for empirical risk minimization,” in Recognition, Classification, and Forecasting: Mathematical Methods and Their Application (Nauka, Moscow, 1989), pp. 207–249.

    Google Scholar 

  163. V. Vapnik and O. Chapelle, “Bounds on error expectation for support vector machines,” Neural Comput. 12, 2013–2036 (2000). https://doi.org/10.1162/089976600300015042

    Article  CAS  PubMed  Google Scholar 

  164. V. N. Vapnik, Yu. K. Danileĭko, T. P. Lebedeva, Yu. P. Minaev, and A. I. Mikhal’skiĭ, “Numerical simulation of laser damage to an optical material with defects,” Sov. J. Quantum Electron. 17, 177 (1987). https://doi.org/10.1070/QE1987v017n02ABEH006564

    Article  Google Scholar 

  165. V. N. Vapnik and T. G. Glazkova, in Automatization of Cytological Drug Analysis (Zinatne, Riga, 1975), pp. 27–38.

    Google Scholar 

  166. V. N. Vapnik, T. G. Glazkova, and A. Ya. Chervonenkis, “Algorithms for teaching pattern recognition using the generalized portrait method: Algorithms OP-4, OP-5, OP-6, and OP-7,” in Algorithms for Teaching Pattern Recognition, Ed. by V. N. Vapnik (Sovetskoe Radio, Moscow, 1973).

    Google Scholar 

  167. V. N. Vapnik, T. G. Glazkova, V. A. Koshcheev, A. I. Mikhal’skii, and A. Ya. Chervonenkis, Algorithms and Programs for Reconstruction of Dependences (Nauka, Moscow, 1984).

    Google Scholar 

  168. V. N. Vapnik, A. Ya, and Lerner, “Recognition of patterns with help of generalized portraits,” Avtom. Telemekh. 24, 774–780 (1963).

    Google Scholar 

  169. V. N. Vapnik, A. Ya. Lerner, and A. Ya. Chervonenkis, “Systems of pattern recognition teaching using generalized portraits,” Tekh. Kibern., No. 1 (1965).

  170. V. N. Vapnik, A. Ya. Lerner, and A. Ya. Chervonenkis, “Learning methods in diagnostic problems,” in Proc. Int. Symp. on Engineering and Biological Control Problems (Nauka, Moscow, 1971), p. 260.

  171. V. N. Vapnik, N. M. Markovich, and A. R. Stefanyuk, “Rate of convergence in L 2 of the projection estimator of the distribution density,” Autom. Remote Control 53, 677–686 (1992).

    Google Scholar 

  172. V. N. Vapnik and A. I. Mikhal’skii, “On search for dependencies by the method of ordered risk minimization,” Avtom. Telemekh., No. 10, 86–96 (1974).

  173. V. N. Vapnik and A. R. Stefanyuk, “Nonparametric methods for reconstructing probability densities,” Autom. Remote Control 39, 1127–1140 (1978).

    MathSciNet  Google Scholar 

  174. V. N. Vapnik and A. M. Sterin, “Ordered minimization of total risk in a pattern-recognition problem,” Autom. Remote Control 38, 1495–1503 (1977).

    Google Scholar 

  175. V. Vapnik and A. Vashist, “A new learning paradigm: Learning using privileged information,” Neural Networks 22, 544–557 (2009). https://doi.org/10.1016/j.neunet.2009.06.042

    Article  PubMed  Google Scholar 

  176. V. N. Vapnik, A. A. Zhuravel’, and A. Ya. Chervonenkis, “Algorithms for teaching pattern recognition using the generalized portrait method: Algorithms OP-1, OP-2, and OP-3,” in Algorithms for Teaching Pattern Recognition, Ed. by V. N. Vapnik (Sovetskoe Radio, Moscow, 1973).

    Google Scholar 

  177. D. D. Venediktov, D. G. Zaridze, A. A. Kliment’ev, I. B. Muchnik, V. K. Ol’shanskii, and A. M. Petrovskii, “On international scientific project implementation with special reference to cancer research,” Avtom. Telemekh., No. 1, 157–163 (1976).

  178. A. Yu. Volozh and I. B. Muchnik, “Minimax approach to the construction of a generalized ordering,” Autom. Remote Control 52, 1612–1620 (1991).

    Google Scholar 

  179. P. P. Zabrejko, M. A. Krasnosel’skij, and Ya. Z. Tsypkin, “Optimal and suboptimal learning algorithms,” Autom. Remote Control 1970, 1619–1626 (1970).

    Google Scholar 

  180. L. M. Zakharova, N. E. Kiseleva, I. B. Muchnik, A. M. Petrovskii, and R. B. Sverchinskaya, “Analyzing the course of the hypertonic desease from empirical data,” Avtom. Telemekh., No. 9, 114–122 (1977).

  181. Yu. M. Zaks and I. B. Muchnik, “Incomplete classifications of a finite set of objects using monotone systems,” Autom. Remote Control 50, 553–560 (1989).

    Google Scholar 

  182. N. V. Zavalishin, “Hypothesis concerning distribution of eye fixations during survey of pictures,” Avtom. Telemekh., 59–68 (1968).

  183. N. V. Zavalisin and I. B. Muchnik, “Linguistic (structural) approach to the pattern recognition problem (review),” Autom. Remote Control 1969, 1263–1291 (1969).

    MathSciNet  Google Scholar 

  184. N. V. Zavalishin and I. B. Muchnik, “Model of visual estimation of size of angle,” Avtom. Telemekh., No. 4, 89–98 (1971).

  185. N. V. Zavalishin, I. B. Muchnik, and R. L. Sheinin, “Automatic classification of textural images,” Autom. Remote Control 36, 271–277 (1975).

    Google Scholar 

  186. A. A. Zhuravel’, N. V. Troshko, and L. G. Edzhubov, “Using the generalized portrait algorithm for pattern recognition in judicial graphology,” in Legal Cybernetics (Nauka, Moscow, 1970).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank D.A. Novikov and A.L. Chernyavsky for valuable recommendations and the materials that they provided.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Mandel or A. I. Mikhalsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

A.S. Mandel, Dr. Sci. (Eng.), Chief Researcher at the Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Professor at the Department of Physics at Moscow State University. Scientific interests: random processes, operations research, theory of inventory and production management, queueing theory, control under uncertainty, reliability theory, expert-statistical systems.

A.I. Mikhalsky, Dr. Sci. (Bio.), Cand. Sci. (Eng.). Chief Researcher at the Trapeznikov Institute of Control Sciences of Russian Academy of Sciences. Scientific interests: recovery of dependences based on empirical data, mathematical and statistical modeling of morbidity and life expectancy in a changing environment, application of machine learning methods in biology, genetics and gerontology, man-machine interfaces.

Translated by D. Sventsitsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandel, A.S., Mikhalsky, A.I. On the Work of the Institute of Control Sciences of the Russian Academy of Sciences in the Field of Pattern Recognition Theory and Applications in the 20th Century. Pattern Recognit. Image Anal. 33, 1593–1623 (2023). https://doi.org/10.1134/S1054661823040284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661823040284

Keywords:

Navigation