Skip to main content
Log in

Development of Computer Vision, Image Processing, and Analysis at the Digital Optics Laboratory of the Institute for Information Transmission Problems of the Russian Academy of Sciences

  • SCIENTIFIC SCHOOLS OF THE INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS OF THE RUSSIAN ACADEMY OF SCIENCES (KHARKEVICH INSTITUTE), MOSCOW, THE RUSSIAN FEDERATION
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

Optical and digital images are one of the most important channels for transmitting information. At the Institute for Information Transmission Problems of the Russian Academy of Sciences (IITP RAS), this topic has always, since the founding of the institute, been given the closest attention. The institute’s employees have made significant contributions to both the domestic and global science of image processing. In this work, the authors touched only on the main stages of the development of the theory, methods, and algorithms for image processing and analysis in the Laboratory of Digital Optics of the Institute for Information Transmission Problems of the Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. N. N. Aizenberg, I. N. Aizenberg, and T. P. Belikova, “Extraction and localization of important features an gray-scale images: Implementation on the CNN,” in Proc. Third IEEE Int. Workshop on Cellular Neural Networks and Their Applications (CNNA-94), Rome, 1994 (IEEE, 1994), pp. 207–212. https://doi.org/https://doi.org/10.1109/cnna.1994.381678

  2. A. Amato, M. G. Mozerov, A. D. Bagdanov, and J. Gonzalez, “Accurate moving cast shadow suppression based on local color constancy detection,” IEEE Trans. Image Process. 20 (10), 2954–2966 (2011). https://doi.org/10.1109/tip.2011.2132728

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  3. T. P. Belikova, M. A. Kronrod, P. A. Chochia, and L. P. Yaroslavskii, “Digital processing of Martian surface photographs from Mars 4 and Mars 5,” Cosmic Res. 13, 800–811 (1976).

    ADS  Google Scholar 

  4. T. P. Belikova, I. N. Zal’tsman, and L. P. Yaroslavskii, X-ray method for diagnosing breast cancer, SU Patent 919178 A1 (1988).

  5. T. P. Belikova, N. I. Yashunskaya, and E. A. Kogan, “Computer-aided differential diagnosis of small solitary pulmonary nodules,” Comput. Biomed. Res. 29, 48–62 (1996). https://doi.org/10.1006/cbmr.1996.0005

    Article  CAS  PubMed  Google Scholar 

  6. J. Diaz-Escobar, V. Kober, V. Karnaukhov, and M. Mozerov, “Recognition of breast abnormalities using phase features,” J. Commun. Technol. Electron. 65, 1476–1483 (2020). https://doi.org/10.1134/s1064226920120050

    Article  Google Scholar 

  7. E. Ershov, V. Karnaukhov, and M. Mozerov, “Probabilistic choice between symmetric disparities in motion stereo matching for a lateral navigation system,” Opt. Eng. 55, 023101 (2015). https://doi.org/10.1117/1.oe.55.2.023101

  8. E. I. Ershov, V. N. Karnaukhov, and M. G. Mozerov, “Stereovision algorithms applicability investigation for motion parallax of monocular camera case,” J. Commun. Technol. Electron. 61, 695–704 (2016). https://doi.org/10.1134/s1064226916060073

    Article  Google Scholar 

  9. E. Ershov, V. Karnaukhov, and M. Mozerov, “Probabilistic choice between symmetric disparities in motion stereo matching for a lateral navigation system,” Opt. Eng. 55, 023101 (2016). https://doi.org/10.1117/1.oe.55.2.023101

  10. P. S. Gomina, V. I. Kober, V. N. Karnaukhov, M. G. Mozerov, and A. V. Kober, “Classification of breast abnormalities using deep learning,” J. Commun. Technol. Electron. 67, 1552–1556 (2022). https://doi.org/10.1134/s1064226922120051

    Article  Google Scholar 

  11. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). https://doi.org/10.1063/1.1755043

    Article  ADS  Google Scholar 

  12. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981). https://doi.org/10.1016/0004-3702(81)90024-2

    Article  Google Scholar 

  13. V. N. Karnaukhov, N. S. Merzlyakov, and L. P. Yaroslavsky, “Three dimensional computer generated holographic movie,” Sov. Tech. Phys. Lett 2, 169–172 (1976).

    Google Scholar 

  14. V. N. Karnaukhov and M. G. Mozerov, “Interpolation of multispectral images based on convolution with the geodesic distance kernel and quality estimation using the structural similarity index criterion,” J. Commun. Technol. Electron. 62, 1470–1476 (2017). https://doi.org/10.1134/s1064226917120075

    Article  Google Scholar 

  15. V. N. Karnaukhov and M. G. Mozerov, “Restoration of multispectral images by the gradient reconstruction method and estimation of the blur parameters on the basis of the multipurpose matching model,” J. Commun. Technol. Electron. 61, 1426–1431 (2016). https://doi.org/10.1134/s106422691612010x

    Article  Google Scholar 

  16. V. N. Karnaukhov and M. G. Mozerov, “Restoration of noisy multispectral images with a geodetic distance filter,” J. Commun. Technol. Electron. 63, 612–615 (2018). https://doi.org/10.1134/s1064226918060128

    Article  Google Scholar 

  17. V. N. Karnaukhov, N. S. Merzlyakov, M. G. Mozerov, L. I. Dimitrov, and E. Wenger, “Digital display holograms,” Opt. Lasers Eng. 29, 361–367 (1998). https://doi.org/10.1016/s0143-8166(97)00123-1

    Article  Google Scholar 

  18. V. N. Karnaukhov, N. S. Merzlyakov, M. G. Mozerov, L. P. Yaroslavsky, L. I. Dimitrov, and E. Wenger, “Computer-generated display macro holograms,” Proc. SPIE 2363, 164–168 (1995). https://doi.org/10.1117/12.199629

    Article  ADS  Google Scholar 

  19. V. N. Karnaukhov, V. I. Kober, and M. G. Mozerov, “Artifact suppression with geodesic kernel filter for defocused images restored by Wiener filtering,” J. Commun. Technol. Electron. 64, 1458–1463 (2019). https://doi.org/10.1134/s1064226919120052

    Article  Google Scholar 

  20. V. N. Karnaukhov, V. I. Kober, and M. G. Mozerov, “Improving the quality and contrast of image details using the geodesic distance filter,” J. Commun. Technol. Electron. 65, 706–711 (2020). https://doi.org/10.1134/s1064226920060145

    Article  Google Scholar 

  21. V. N. Karnaukhov and M. G. Mozerov, “Artefact suppression in multispectral images degraded by motion blur and restored by Wiener filtering,” Proc. SPIE 10789, 107891H (2018). https://doi.org/10.1117/12.2325246

  22. V. Kim and L. Yaroslavskii, “Rank algorithms for picture processing,” Comput. Vision, Graphics, Image Process. 35, 234–258 (1986). https://doi.org/10.1016/0734-189x(86)90029-0

    Article  ADS  Google Scholar 

  23. V. I. Kober and M. G. Mozerov, “Rank image processing methods using spatial connectivity of elements,” in Abstracts of Reports of Young Scientists of the Institute for Problems of Information Transmission, Russian Academy of Sciences (Inst. Probl. Peredachi Inf., Ross. Akad. Nauk, Moscow,), pp. 23–25.

  24. V. Kober, “Robust nonlinear correlations,” Proc. SPIE 5203, 82–87 (2003). https://doi.org/10.1117/12.503360

    Article  ADS  Google Scholar 

  25. V. Kober, M. G. Mozerov, J. Alvarez-Borrego, and H. Hidalgo Silva, “Image enhancement using nonlinear filters with spatially adaptive neighborhoods,” Proc. SPIE 4472, 29 (2001). https://doi.org/10.1117/12.449781

    Article  Google Scholar 

  26. V. Kober and J. Campos, “Accuracy of location measurement of a noisy target in a nonoverlapping background,” J. Opt. Soc. Am. A 13, 1653–1666 (1996). https://doi.org/10.1364/josaa.13.001653

    Article  ADS  Google Scholar 

  27. V. Kober, T. Cichocki, M. Gedziorowski, and T. Szoplik, “Optical-digital method of local histogram calculation by threshold decomposition,” in Morphological Image Processing: Principles and Optoelectronic Implementations, Ed. by T. Szoplik, SPIE’s Milestone Series of Selected Reprints, Vol. 127 (SPIE Optical Engineering Press, Bellingham, Wash., 1996), pp. 337–343.

  28. V. Kober, T. Cichocki, M. Gedziorowski, and T. Szoplik, “Optical-digital method of local histogram calculation by threshold decomposition,” Appl. Opt. 32, 692–698 (1993). https://doi.org/10.1364/ao.32.000692

    Article  ADS  CAS  PubMed  Google Scholar 

  29. V. Kober, J. Garcia, T. Szoplik, and L. P. Yaroslavsky, “Nonlinear image processing based on optical-digital method of local histogram calculation,” Int. J. Opt. Comput. 2, 367–383 (1991).

    Google Scholar 

  30. V. Kober, J. Garcia, T. Szoplik, and L. Yaroslavsky, “Hybrid morphological processor based on local histogram calculation method,” Proc. SPIE 1983, 19834F (1993). https://doi.org/10.1117/12.2308578

  31. V. Kober, M. G. Mozerov, and J. Alvarez-Borrego, “Adaptive image processing using rank-order filters with spatial connectivity of elements,” Proc. SPIE 4115, 570–581 (2000). https://doi.org/10.1117/12.411577

    Article  ADS  Google Scholar 

  32. V. Kober, M. Mozerov, and J. Alvarez-Borrego, “Nonlinear filters with spatially-connected neighborhoods,” Opt. Eng. 40, 971–983 (2001). https://doi.org/10.1117/1.1367352

    Article  ADS  Google Scholar 

  33. V. Kober, M. Mozerov, and J. Álvarez-Borrego, “Spatially adaptive algorithm for impulse noise removal from color images,” in Progress in Pattern Recognition, Speech and Image Analysis. CIARP 2003, Ed. by A. Sanfeliu and J. Ruiz-Shulcloper, Lecture Notes of Computer Science, Vol. 2905 (Springer, Berlin, 2003), pp. 113–120. https://doi.org/10.1007/978-3-540-24586-5_13

    Book  Google Scholar 

  34. V. Kober, M. G. Mozerov, J. Alvarez-Borrego, and I. A. Ovseyevich, “Fast algorithms of rank-order filters with spatially adaptive neighborhoods,” Pattern Recognit. Image Anal. 11, 690–698 (2001).

    Google Scholar 

  35. V. Kober, M. G. Mozerov, J. Alvarez-Borrego, and I. A. Ovseyevich, “Morphological image processing with adaptive structural element,” in Proceedings of International Workshop on Optics in Computing (St. Petersburg, 2002), pp. 7–8.

  36. V. Kober, M. Mozerov, J. Álvarez-Borrego, and I. A. Ovseyevich, “Nonlinear image processing with adaptive structural element,” Pattern Recognit. Image Anal. 13, 476–482 (2003). https://doi.org/10.1134/s1054661807010142

    Article  Google Scholar 

  37. V. Kober, M. Mozerov, J. Alvarez-Borrego, and I. A. Ovseyevich, “Rank and morphological image processing with adaptive structural element,” 13, 64–66 (2003).

  38. V. Kober, M. G. Mozerov, J. Alvarez-Borrego, and I. A. Ovseyevich, “Rank image processing using spatially adaptive neighborhoods,” Pattern Recognit. Image Anal. 11, 542–552 (2001).

    Google Scholar 

  39. V. Kober, M. Mozerov, and I. A. Ovseyevich, “Improved correlation discrimination of similar objects,” in Proc. Int. Conf. Artificial Intelligent Systems (Divnomorskoe, Krasnodar krai, 2003), p. 184.

  40. V. Kober, L. P. Yaroslavsky, J. Campos, and M. J. Yzuel, “Optimal filter approximation by means of a phase-only filter with quantization,” Opt. Lett. 19, 978–980 (1994). https://doi.org/10.1364/ol.19.000978

    Article  ADS  CAS  PubMed  Google Scholar 

  41. V. Kober, L. P. Yaroslavsky, J. Campos, and M. J. Yzuel, “Optimal filter approximation by means of a phase-only filter with quantization,” Proc. SPIE 2363, 127–132 (1994).

    Article  ADS  Google Scholar 

  42. V. Kober, M. G. Mozerov, M. Park, and T. Choi, “Motion stereo based on adaptive correlation matching,” Proc. SPIE 3460, 828–833 (1998). https://doi.org/10.1117/12.323243

    Article  ADS  Google Scholar 

  43. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Experiments on digital holography,” Avtometriya, No. 6, 30 (1972).

  44. R. W. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. J. Tech. Phys. 17, 333–334 (1972).

    Google Scholar 

  45. B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in IJCAI'81: 7th Int. Joint Conf. on Artificial Intelligence (Vancouver, 1981), Vol. 81, pp. 674–679.

  46. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London, Ser. B 207, 187–217 (1980). https://doi.org/10.1098/rspb.1980.0020

    Article  ADS  CAS  Google Scholar 

  47. D. Marr and T. Poggio, “From understanding computation to understanding neural circuitry,” A.I. Memo 357 (MIT, 1976).

    Google Scholar 

  48. D. Marr, D. Willshaw, and B. McNaughton, “Simple Memory: A Theory for Archicortex,” in From the Retina to the Neocortex, Ed. by L. Vaina (Birkhäuser, Boston, 1991), pp. 59–128. https://doi.org/10.1007/978-1-4684-6775-8_5

    Book  Google Scholar 

  49. D. Marr, “Artificial intelligence—A personal view,” Artif. Intell. 9, 37–48 (1977). https://doi.org/10.1016/0004-3702(77)90013-3

    Article  Google Scholar 

  50. N. S. Merzlyakov and M. G. Mozerov, “Computer-generated true-color rainbow holograms,” Opt. Lasers Eng. 29, 369–376 (1998). https://doi.org/10.1016/s0143-8166(97)00124-3

    Article  Google Scholar 

  51. “A method of computer generation of correlated Gaussian pseudo-random numbers,” USSR Comput. Math. Math. Phys. 12 (5), 345–351 (1972). https://doi.org/10.1016/0041-5553(72)90026-2

  52. L. I. Mirkin and L. P. Yaroslavskii, “Method for measuring image noisiness,” Vopr. Kibernetiki 38, 97 (1978).

    Google Scholar 

  53. M. G. Mozerov, “Digital image processing methods in problems of reconstructing three-dimensional surfaces, Candidate’s Dissertation in Physics and Mathematics,” (Moscow, 1995).

  54. M. G. Mozerov, V. Kober, and T. Choi, “Removal of impulsive noise from highly corrupted color images,” 5203, 2713–2717 (2003). https://doi.org/10.1117/12.503362

  55. M. G. Mozerov, A. Amato, X. Roca, and J. Gonzalez, “Trajectory occlusion handling with multiple-view distance-minimization clustering,” Opt. Eng. 47, 047202 (2008). https://doi.org/10.1117/1.2909665

  56. M. G. Mozerov, V. Kober, A. Tchernykh, and T.‑S. Choi, “Motion estimation using modified dynamic programming,” Opt. Eng. 41, 2592–2598 (2002). https://doi.org/10.1117/1.1503348

    Article  ADS  Google Scholar 

  57. M. G. Mozerov, V. I. Kober, and I. A. Ovseyevich, “Increasing precision and reducing computational complexity in stereo reconstruction tasks,” Pattern Recognit. Image Anal. 4, 116–123 (1994).

    Google Scholar 

  58. M. G. Mozerov, “Constrained optical flow estimation as a matching problem,” IEEE Trans. Image Process. 22, 2044–2055 (2013). https://doi.org/10.1109/TIP.2013.2244221

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  59. M. G. Mozerov and J. Van De Weijer, “Accurate stereo matching by two-step energy minimization,” IEEE Trans. Image Process. 24, 1153–1163 (2015). https://doi.org/10.1109/TIP.2015.2395820

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  60. M. G. Mozerov and J. Van De Weijer, “Global color sparseness and a local statistics prior for fast bilateral filtering,” IEEE Trans. Image Process. 24, 5842–5853 (2015). https://doi.org/10.1109/TIP.2015.2492822

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  61. M. G. Mozerov and J. Van De Weijer, “Improved recursive geodesic distance computation for edge preserving filter,” IEEE Trans. Image Process. 26, 3696–3706 (2017). https://doi.org/10.1109/TIP.2017.2705427

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  62. M. G. Mozerov and J. Van De Weijer, “One-view occlusion detection for stereo matching with a fully connected CRF model,” IEEE Trans. Image Process. 28, 2936–2947 (2019). https://doi.org/10.1109/TIP.2019.2892668

    Article  ADS  MathSciNet  Google Scholar 

  63. M. G. Mozerov and J. Van De Weijer, “Computer-generated true-color rainbow holograms,” Proc. SPIE 2363, 169–173 (1995).

    Article  ADS  Google Scholar 

  64. M. G. Mozerov, V. I. Kober, I. A. Ovseyevich, and T. S. Choi, “Motion stereo matching using a modified dynamic programming,” Pattern Recognit. Image Anal. 10, 90–96 (2000).

    Google Scholar 

  65. M. G. Mozerov, T. S. Choi, and I. A. Ovseyevich, “Color motion stereo based on improved stereo matching,” Pattern Recognit. Image Anal. 12, 286–292 (2002).

    Google Scholar 

  66. M. G. Mozerov, T. S. Choi, and I. A. Ovseyevich, “Motion stereo matching using a modified dynamic programming,” Pattern Recognit. Image Anal. 10, 90–96 (2000).

    Google Scholar 

  67. M. Mozerov, V. Kober, and T. S. Choi, “Improved motion stereo matching based on a modified dynamic programming,” Opt. Eng. 40, 2234–2239 (2001). https://doi.org/10.1117/1.1404992

    Article  ADS  Google Scholar 

  68. M. Mozerov and V. Kober, “Motion estimation based on hidden segmentation,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci. E88-A, 1369–1372 (2005). https://doi.org/10.1093/ietfec/e88-a.5.1369

    Article  ADS  Google Scholar 

  69. M. Mozerov, J. Gonzàlez, X. Roca, and J. J. Villanueva, “Trinocular stereo matching with composite disparity space image,” in 16th IEEE Int. Conf. on Image Processing (ICIP), Cairo, 2009 (IEEE, 2009), pp. 2089–2092. https://doi.org/10.1109/icip.2009.5414393

  70. M. Mozerov, V. Kober, and T.-S. Choi, “Motion estimation with a dynamic programming optimization operator,” IEICE Trans. Commun. 86, 3617–3621 (2003).

    Google Scholar 

  71. M. Mozerov, “An effective stereo matching algorithm with optimal path cost aggregation,” in Pattern Recognition. DAGM 2006, Ed. by K. Franke, K. R. Müller, B. Nickolay, and R. Schäfer, Lecture Notes in Computer Science, Vol. 4174 (Springer, Berlin, 2006), pp. 617–626. https://doi.org/10.1007/11861898_62

    Book  Google Scholar 

  72. M. Mozerov, “Computer-generated holograms (CGH),” in Encyclopedia of Optical and Photonic Engineering, Second Edition, Ed. by C. Hoffman and R. Driggers (CRC Press, Boca Raton, Fla., 2015), pp. 1–9. https://doi.org/10.1081/e-eoe2-120021860

    Book  Google Scholar 

  73. M. S. Park, M. Mozerov, D. Y. Kim, K. S. Roh, and T. S. Chui, “Object shape recovery in lateral navigation system using motion stereo technique,” in Proc. 1999 IEEE/SICE/RSJ. Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems. MFI'99, Taipei, 1999 (IEEE, 1999), pp. 273–278. https://doi.org/10.1109/mfi.1999.816002

  74. A. N. Ruchai, V. I. Kober, K. A. Dorofeev, V. N. Karnaukhov, and M. G. Mozerov, “Classification of breast abnormalities using a deep convolutional neural network and transfer learning,” J. Commun. Technol. Electron. 66, 778–783 (2021). https://doi.org/10.1134/s1064226921060206

    Article  CAS  Google Scholar 

  75. A. N. Ruchay, V. I. Kober, K. A. Dorofeev, V. N. Karnaukhov, and M. G. Mozerov, “Segmentation of breast masses in digital mammography based on U-net deep convolutional neural networks,” J. Commun. Technol. Electron. 67, 1531–1541 (2022). https://doi.org/10.1134/s106422692212018x

    Article  Google Scholar 

  76. R. Veil, J. Silvennoinen, K. Nygren, and M. G. Mozerov, “Holographic nondestructive testing in bone growth disturbance studies,” Opt. Eng. 33, 830–834 (1994). https://doi.org/10.1117/12.160867

    Article  ADS  Google Scholar 

  77. R. Silvennoinen and M. G. Mozerov, “Controlled effects of aliasing synthetic Fresnel holograms with pixel phase error function,” Opt. Eng. 36, 558–565 (1997). https://doi.org/10.1117/1.601227

    Article  ADS  Google Scholar 

  78. R. Vitkus and L. Yaroslavsky, “Recursive algorithms for local adaptive linear filtration,” in Computer Analysis of Images and Patterns, Ed. by L. P. Yaroslavsky, A. Rosenfeld, and W. Wilhelmi, Mathematical Research, Vol. 40 (De Gruyter, Berlin, 1987), pp. 34–39. https://doi.org/10.1515/9783112473184-005

  79. L. P. Yaroslavskii, Digital Signal Processing in Optics and Holography: Introduction to Digital Optics (Radio i Svyaz’, Moscow, 1987).

    Google Scholar 

  80. L. P. Yaroslavskii and N. S. Merzlyakov, Digital Holography (Nauka, Moscow, 1982).

    Google Scholar 

  81. L. P. Yaroslavskii, “On the distribution of time of reaching the absolute maximum of realization of the sum of pulse signal and correlated Gaussian noise,” Radiotekh. Elektron., No. 6, 1169–1173 (1970).

  82. L. P. Yaroslavskii, “Accuracy and reliability of measuring the position of a two-dimensional object in the plane,” Radiotekh. Elektron., No. 4, 714–720 (1972).

  83. L. P. Yaroslavskii, “Shifted discrete Fourier transforms,” Probl. Peredachi Informatsii 15 (4), 102–105 (1979).

  84. L. P. Yaroslavskii, Introduction to the Digital Image Processing (Moscow, 1979).

    Google Scholar 

  85. L. P. Yaroslavsky, “Is the phase-only filter and its modifications optimal in terms of the discrimination capability in pattern recognition?,” Appl. Opt. 31, 1677–1679 (1992). https://doi.org/10.1364/ao.31.001677

    Article  ADS  CAS  PubMed  Google Scholar 

  86. L. P. Yaroslavsky, “Target location measurement by optical correlators: A performance criterion: Comment,” Appl. Opt. 31, 6189–6191 (1992). https://doi.org/10.1364/ao.31.006189

    Article  ADS  CAS  PubMed  Google Scholar 

  87. L. P. Yaroslavsky, “The theory of optimal methods for localization of objects in pictures,” in Progress in Optics, Ed. by E. Wolf (Elsevier, 1993), Vol. 32, pp. 145–201. https://doi.org/10.1016/s0079-6638(08)70163-x

    Book  Google Scholar 

  88. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004). https://doi.org/10.1364/ol.29.001668

    Article  ADS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Karnaukhov or M. G. Mozerov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Victor N. Karnaukhov received his MS degree in physics from Moscow State University in 1975 and his Ph.D. degree in digital image processing from the Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, in 1986. His research interests include signal and image processing, image restoration, and pattern recognition.

Mikhail G. Mozerov received his MS degree in physics from Moscow State University in 1982 and his Ph.D. degree in digital image processing from the Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, in 1995. His research interests include signal and image processing, stereo and optical flow, and pattern recognition.

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnaukhov, V.N., Mozerov, M.G. Development of Computer Vision, Image Processing, and Analysis at the Digital Optics Laboratory of the Institute for Information Transmission Problems of the Russian Academy of Sciences. Pattern Recognit. Image Anal. 33, 1242–1249 (2023). https://doi.org/10.1134/S1054661823040223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661823040223

Keywords:

Navigation