Skip to main content
Log in

Image Analysis and Processing Theory, Methods, and Algorithms. Review of Research at the Iconics Laboratory of the Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

  • SCIENTIFIC SCHOOLS OF THE INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS OF THE RUSSIAN ACADEMY OF SCIENCES (KHARKEVICH INSTITUTE), MOSCOW, THE RUSSIAN FEDERATION
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

A historical and analytical review is given of the development of the Iconics Laboratory at the Institute for Information Transmission Problems of the Russian Academy of Sciences since the establishment of the Institute. The main research areas of the laboratory are discussed including image models, spatial and frequency methods of video data analysis and processing, issues of distortion elimination, image decomposition and enhancement, object detection, image segmentation; application of the developed methods for processing space images of planets; issues of constructing specialized image processing systems, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.
Fig. 46.
Fig. 47.
Fig. 48.
Fig. 49.
Fig. 50.
Fig. 51.
Fig. 52.
Fig. 53.
Fig. 54.
Fig. 55.
Fig. 56.
Fig. 57.
Fig. 58.
Fig. 59.

REFERENCES

  1. F. Ackermann, “Digital image correlation: performance and potential application in photogrammetry,” Photogrammetric Rec. 11, 429–439 (1984). https://doi.org/10.1111/j.1477-9730.1984.tb00505.x

    Article  Google Scholar 

  2. H. C. Andrews and B. R. Hunt, Digital Image Restoration (Prentice-Hall, New Jersey, 1977).

    Google Scholar 

  3. A. G. Arakcheev, Yu. I. Gurfinkel, and V. G. Pevgov, “Computer capillaroscope for noninvasive studies of circulating blood parameters,” Moskovskii Khirurgicheskii Zh., No. 5, 27–30 (2010).

  4. T. P. Belikova, “Modeling of linear filters for processing X-ray images in problems of medical diagnostics,” in Digital Optics. Processing of Images and Fields in Experimental Studies (Nauka, Moscow, 1990), pp. 106–133.

    Google Scholar 

  5. T. P. Belikova, “Some methods of digital image preparation,” in Digital Signal Processing and Its Applications (Nauka, Moscow, 1981), pp. 87–99.

    Google Scholar 

  6. T. P. Belikova, V. E. Gendler, and L. P. Yaroslavskii, “Geological decryption in dialog mode in automated digital image processing systems,” Issledovanie Zemli iz Kosmosa, No. 3, 102–112 (1981).

  7. T. P. Belikova and L. P. Yaroslavskii, “Using adaptive amplitude transforms for image preparation,” Vopr. Radioelektroniki. Ser. Obshchetekhnicheskaya 14, 88–98 (1974).

    Google Scholar 

  8. T. P. Belikova and L. P. Yaroslavskii, “Image preparation in dialog mode in problems of medical diagnostics and mineral resource investigation,” Avtometriya, No. 4 (1980).

  9. I. M. Bockstein, “Color equalization—A perspective method of color image processing,” Acta Politechnica Scandinavica, Appl. Phys. Ser., No. 149, 132–135 (1985).

  10. I. M. Bockshtein, “Analysis of image characteristics in display processor,” in Iconics. Theory and Methods of Image Processing (Nauka, Moscow, 1983), pp. 136–144.

    Google Scholar 

  11. I. M. Bockshtein, “Display processor for dialog processing of grayscale images,” in Digital Signal Processing and Its Applications (Nauka, Moscow, 1981), pp. 187–206.

    Google Scholar 

  12. I. M. Bockshtein, “Using the differential pulse-code modulation for reducing the memory of display processor,” Vopr. Kibernetiki 38, 108–121 (1978).

    Google Scholar 

  13. I. M. Bockshtein, “Method of color equalization and its application for color image processing,” in Iconics. Image Coding and Processing (Nauka, Moscow, 1988), pp. 112–117.

    Google Scholar 

  14. I. M. Bockshtein, “Capabilities of improving the sharpness of color images,” in Iconics. Digital Processing of Video Information (Nauka, Moscow, 1989), pp. 60–65.

    Google Scholar 

  15. I. M. Bockstein, P. A. Chochia, and M. A. Kronrod, “Interactive processing of Venus images,” in Lunar and Planetary Science 17th Conf. (Lunar and Planetary Institute, Houston, 1986), pp. 60–61.

  16. I. Bockstein, P. Chochia, and M. Kronrod, “Methods of Venus radiolocation map synthesis using strip images of Venera-15 and Venera-16 space stations,” in Lunar and Planetary Science 19th Conf. (Lunar and Planetary Institute, Houston, 1988), pp. 108–109.

  17. I. Bockstein, P. Chochia, and M. Kronrod, “Methods of Venus radiolocation map synthesis using strip images of VENERA-15 and VENERA-16 space stations,” Earth, Moon Planets 43, 233–259 (1988). https://doi.org/10.1007/bf00117096

    Article  Google Scholar 

  18. I. M. Bockstein, M. A. Kronrod, and P. A. Chochia, “Method for Venus radiolocation map synthesis by the data of automatic Venera-15 and Venera-16 space stations,” in Iconics. Digital Processing of Video Information (Nauka, Moscow, 1989), pp. 35–60.

    Google Scholar 

  19. I. Bockstein, M. Kronrod, and Yu. Gektin, “Geometrical transformation of panoramas of Mars surface received from Phobos-2 space station,” in 25th Lunar and Planetary Science Conf. (Houston, 1994), pp. 133–134.

  20. I. M. Bockshtein, N. S. Merzlyakov, and N. R. Popova, “Detection and localization of small objects on an inhomogeneous background,” in Digital Optics. Processing of Images and Fields in Experimental Studies (Nauka, Moscow, 1990), pp. 164–173.

    Google Scholar 

  21. B. L. Borilin and P. A. Chochia, “Restoration of photodocuments using a computer,” Sovetskie Arkhivy 3, 45–48 (1980).

    Google Scholar 

  22. A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel texture analysis using localized spatial filters,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 55–73 (1990). https://doi.org/10.1109/34.41384

    Article  Google Scholar 

  23. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986). https://doi.org/10.1109/tpami.1986.4767851

    Article  Google Scholar 

  24. E. J. Carton, J. S. Weszka, and A. Rosenfeld, Some Basic Texture Analysis Techniques, TR-288 (Computer Science Center, Univ. of Maryland, 1974).

    Google Scholar 

  25. T. Chang and C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process. 2, 429–441 (1993). https://doi.org/10.1109/83.242353

    Article  CAS  PubMed  Google Scholar 

  26. P. A. Chochia, “A pyramidal image segmentation algorithm,” J. Commun. Technol. Electron. 55, 1550–1560 (2010). https://doi.org/10.1134/s1064226910120296

    Article  Google Scholar 

  27. P. A. Chochia, “Analysis of video data formed by the capillaroscope and blood flow dynamics measurements,” J. Commun. Technol. Electron. 59, 1524–1529 (2014). https://doi.org/10.1134/s1064226914120031

    Article  Google Scholar 

  28. P. A. Chochia, “Analysis of the Image Spectrum for Distortion Diagnostics,” J. Phys.: Conf. Ser. 1368, 032011 (2019). https://doi.org/10.1088/1742-6596/1368/3/032011

  29. P. A. Chochia, “Application of image frequency filtering to elimination of the noise caused by the embossing of the photographic paper,” J. Commun. Technol. Electron. 56, 1518–1521 (2011). https://doi.org/10.1134/s1064226911120023

    Article  Google Scholar 

  30. P. A. Chochia, “Application of digital image processing methods for restoration of archive documents,” in Iconics. Theory and Methods of Image Processing (Nauka, Moscow, 1983), pp. 115–125.

    Google Scholar 

  31. P. A. Chochia, “Automatic gray scale correction of video data,” Proc. SPIE 2363, 82–88 (1995). https://doi.org/10.1117/12.199656

    Article  Google Scholar 

  32. P. A. Chochia, “Automatic processing and analysis of video data formed by a capillaroscope,” Pattern Recognit. Image Anal. 26, 95–108 (2016). https://doi.org/10.1134/s1054661815040057

    Article  Google Scholar 

  33. P. A. Chochia, “Detection of capillaries in the images formed by a capillaroscope,” J. Commun. Technol. Electron. 58, 1314–1323 (2013). https://doi.org/10.1134/s1064226913120036

    Article  Google Scholar 

  34. P. A. Chochia, “Automatic gradation correction of video information,” Komp’yuternaya Opt. 14–15 (1), 37–45 (1995).

    Google Scholar 

  35. P. A. Chochia, “Basic system of image processing for a personal computer,” in Automated Image Processing Systems: Proc. 3rd All-Union Conf. (Leningrad, 1989), pp. 30–31.

  36. P. A. Chochia, “Contour-constrained image smoothing preserving its structure,” J. Commun. Technol. Electron. 66, 769–777 (2021). https://doi.org/10.1134/s1064226921060073

    Article  Google Scholar 

  37. P. A. Chochia, “Determination of parameters of capillary blood flow using video data analysis,” Biomed. Eng. 49, 19–23 (2015). https://doi.org/10.1007/s10527-015-9488-8

    Article  Google Scholar 

  38. P. A. Chochia, “Diagnostics of a linear homogeneous distorting operator on the observed image spectrum,” J. Commun. Technol. Electron. 65, 725–734 (2020). https://doi.org/10.1134/s106422692006008x

    Article  Google Scholar 

  39. P. A. Chochia, “Digital filtering of impulse noise on television images,” Tekh. Sredstv Svyazi: Ser. Tekh. Televideniya, No. 1, 26–36 (1984).

  40. P. A. Chochia, “Disk dialog system for image processing,” in Problems of Design and Application of Discrete Systems and Controls: Proc. 1st Int. Conf. of Young Scientists (Minsk, 1977), pp. 498–500.

  41. P. A. Chochia, “Improving the multizone colored images by amplifying local contrasts,” Issledovanie Zemli iz Kosmosa, No. 6, 95–99 (1988).

  42. P. A. Chochia, “Fast correlative matching of quasi-regular images,” J. Commun. Technol. Electron. 55, 1482–1484 (2010). https://doi.org/10.1134/s1064226910120211

    Article  Google Scholar 

  43. P. A. Chochia, “Formation of the image topological characteristics based on two-dimensional variations and their application for object and noise detection,” J. Commun. Technol. Electron. 62, 1477–1483 (2017). https://doi.org/10.1134/s1064226917120051

    Article  Google Scholar 

  44. P. A. Chochia, “Image decomposition algorithm with a structural constraint of the averaging region,” Pattern Recognit. Image Anal. 31, 394–401 (2021). https://doi.org/10.1134/s1054661821030056

    Article  Google Scholar 

  45. P. A. Chochia, “Image decomposition and enhancement using rank filtering,” Proc. SPIE 3348, 261–266 (1998). https://doi.org/10.1117/12.302494

    Article  Google Scholar 

  46. P. A. Chochia, “Image decomposition based on region-constrained smoothing,” in Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2020, Ed. by A. Del Bimbo , Lecture Notes in Computer Science, Vol. 12665 (Springer, Cham, 2021), pp. 103–111. https://doi.org/10.1007/978-3-030-68821-9_10

    Book  Google Scholar 

  47. P. A. Chochia, “Image enhancement using sliding histograms,” Comput. Vision, Graphics, Image Process. 44, 211–229 (1988). https://doi.org/10.1016/s0734-189x(88)80006-9

    Article  Google Scholar 

  48. P. A. Chochia, “Image objects detection with local topological characteristics, obtained by two-dimensional variations,” J. Phys.: Conf. Ser. 1096, 012047 (2018). https://doi.org/10.1088/1742-6596/1096/1/012047

  49. P. A. Chochia, “Image segmentation based on the analysis of distances in an attribute space,” Optoelectron., Instrum. Data Process. 50, 613–624 (2014). https://doi.org/10.3103/s8756699014060107

    Article  Google Scholar 

  50. P. A. Chochia, “Image segmentation via contour tracking in application to the analysis of the photographs of electronic microcircuits,” J. Commun. Technol. Electron. 55, 1466–1473 (2010). https://doi.org/10.1134/s1064226910120193

    Article  Google Scholar 

  51. P. A. Chochia, “Methods of enhancing aerospace images using fragment histograms,” Sov. J. Remote Sensing 5, 1103–1123 (1989).

    Google Scholar 

  52. P. A. Chochia, Methods for Video Information Processing Based on Two-Scale Image Model (LAP Lambert Academic Publ., Saarbrücken, 2017).

    Google Scholar 

  53. P. A. Chochia, “Methods for image transformation using two-scale model,” in Image Encoding and Processing (Nauka, Moscow, 1988), pp. 98–112.

    Google Scholar 

  54. P. A. Chochia, “Methods for improving aerospace images using fragment histograms,” Issledovanie Zemli iz Kosmosa, No. 6, 66–78 (1985).

  55. P. A. Chochia, “A parallel algorithm for computing sliding histogram,” Avtometriya, No. 2, 40–44 (1990).

  56. P. A. Chochia, “Probabilistic model of contour image,” in Iconics. Digital Processing of Video Information (Nauka, Moscow, 1989), pp. 25–34.

    Google Scholar 

  57. P. A. Chochia, “Processing and analysis of images based on two-scale model,” Preprint of the Institute for Information Transmission Problems, USSR Academy of Sciences (VINITI, Moscow, 1986).

    Google Scholar 

  58. P. A. Chochia, “Reconstruction of amplitude characteristics of monochromatic and multispectral images using gradient function,” Inf. Protsessy 16 (2), 112–120 (2016).

    Google Scholar 

  59. P. A. Chochia, “Segmentation of chip microimages by contour tracking,” in 19th Int. Conf. on Computer Graphics and Vision (GraphiCon 2009) (Moscow, 2009), pp. 309–310.

  60. P. A. Chochia, “Smoothing of images at preserving contours,” in Image Encoding and Processing (Nauka, Moscow, 1988), pp. 87–98.

    Google Scholar 

  61. P. A. Chochia, “Some algorithms for detecting objects based on two-scale image model,” Inf. Protsessy 14 (2), 117–136 (2014).

    Google Scholar 

  62. P. A. Chochia, “Transition from 2D- to 3D-images: Modification of two-scale image model and image processing algorithms,” J. Commun. Technol. Electron. 60, 678–687 (2015). https://doi.org/10.1134/s1064226915060054

    Article  Google Scholar 

  63. P. A. Chochia, “Two-scale image model,” in Image Encoding and Processing (Nauka, Moscow, 1988), pp. 69–87.

    Google Scholar 

  64. P. A. Chochia, “Two tasks in image enhancement technology,”Optical Memory and Neural Networks 7, 37−50 (1998).

    Google Scholar 

  65. P. A. Chochia and M. A. Kronrod, “Principles of dialog organization in a special system for operating with images,” in Interactive Systems: Abstracts of Reports at the 2nd School-Workshop (Metsniereba, Tbilisi, 1980), Vol. 2, pp. 200–202.

    Google Scholar 

  66. P. A. Chochia and O. P. Milukova, “Comparison of two-dimensional variations in the context of the digital image complexity assessment,” J. Commun. Technol. Electron. 60, 1432–1440 (2015). https://doi.org/10.1134/s1064226915120049

    Article  Google Scholar 

  67. P. A. Chochia and O. P. Miliukova, “Two-dimensional variation and image decomposition,” Proc. SPIE 3346, 329–339 (1998). https://doi.org/10.1117/12.301382

    Article  Google Scholar 

  68. Comput. Graphics Image Process. 12 (1–4) (1980).

  69. P.-E. Danielsson, “Getting the median faster,” Comput. Graphics Image Process. 17, 71–78 (1981). https://doi.org/10.1016/s0146-664x(81)80010-x

    Article  Google Scholar 

  70. R. Dash and B. Majhi, “Motion blur parameters estimation for image restoration,” Optik 125, 1634–1640 (2014). https://doi.org/10.1016/j.ijleo.2013.09.026

    Article  Google Scholar 

  71. H. A. David and H. N. Nagaraja, Order Statistics (Wiley, New York, 1970).

    Google Scholar 

  72. I. Kh. Rabkin, Z. S. Vainberg, E. A. Gusev, L. M. Zykin, B. I. Leonov, A. A. Petushkov, F. R. Sosnin, P. A. Chochia, and Ya. M. Kaplun, “Digital synthesis of diagnostic X-ray images,” Biomed. Eng. 18, 7–9 (1984). https://doi.org/10.1007/BF00555819

    Article  Google Scholar 

  73. E. A. Gusev, M. A. Kronrod, D. S. Lebedev, A. A. Petushkov, F. R. Sosnin, and P. A. Chochia, “Digital synthesis of images in the radiography of objects with complex configuration,” Sov. J. Nondestr. Test. 18, 571–575 (1982).

    Google Scholar 

  74. T. P. Belikova, M. A. Kronrod, P. A. Chochia, and L. P. Yaroslavskii, “Digital image processing,” in Mars Surface (Nauka, Moscow, 1980), pp. 45–62.

    Google Scholar 

  75. T. P. Belikova, M. A. Kronrod, P. A. Chochia, and L. P. Yaroslavskii, “Digital processing of Martian surface photographs from Mars 4 and Mars 5,” Cosmic Res. 13, 800–811 (1975).

    Google Scholar 

  76. I. I. Tsukkerman, B. M. Kats, D. S. Lebedev, et al., Digital Encoding of Television Images (Radio i Svyaz’, Moscow, 1981).

    Google Scholar 

  77. E. A. Gusev, A. A. Petushkov, P. A. Chochia, and F. R. Sosnin, “Dynamic radiographic monitoring with a grid and digital image processing,” Sov. J. Nondestr. Test. 20, 246–249 (1984).

    Google Scholar 

  78. R. L. Dobrushin, “The description of a random field by means of conditional probabilities and conditions of its regularity,” Theory Probab. Its Appl. 13, 197–224 (1968). https://doi.org/10.1137/1113026

    Article  MathSciNet  Google Scholar 

  79. R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM 15, 11–15 (1972). https://doi.org/10.1145/361237.361242

    Article  Google Scholar 

  80. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

  81. D. Dunn and W. E. Higgins, “Optimal Gabor filters for texture segmentation,” IEEE Trans. Image Process. 4, 947–964 (1995). https://doi.org/10.1109/83.392336

    Article  CAS  PubMed  Google Scholar 

  82. First Panoramas of the Venus Surface (Nauka, Moscow, 1979).

  83. A. S. Selivanov, N. A. Avatkova, I. M. Bockshtein, Yu. M. Gektin, M. A. Gerasimov, I. E. Davydova, M. A. Kronrod, M. K. Naraeva, B. I. Nosov, A. S. Panfilov, O. M. Sveshnikova, A. S. Titov, I. S. Fainberg, V. P. Chemodanov, and P. A. Chochia, “First colour panoramas of the Venus surface transmitted by Venera 13, 14,” Kosm. Issled. 21, 183–189 (1983).

    Google Scholar 

  84. K. S. Fu and J. K. Mui, “A survey on image segmentation,” Pattern Recognit. 13, 3–16 (1981). https://doi.org/10.1016/0031-3203(81)90028-5

    Article  MathSciNet  Google Scholar 

  85. E. A. Gusev, B. I. Leonov, A. A. Petushkov, F. R. Sosnin, I. A. Sanpiter, and P. A. Chochia, “Funcitonal transformation of image at radiation defectoscopy,” Defektoskopiya, No. 10, 91–93 (1984).

  86. F.-N. Ku, “The principles and methods of histogram modification adapted for visual perception,” Comput. Vision, Graphics, Image Process. 26, 107–117 (1984). https://doi.org/10.1016/0734-189X(84)90132-4

    Article  Google Scholar 

  87. R. Gajjar, A. Pathak, and T. Zaveri, “Defocus blur parameter estimation technique,” Int. J. Electron. Commun. Eng. Technol. 7 (4), 85–90 (2016).

    Google Scholar 

  88. E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware image and video processing,” ACM Trans. Graphics 30 (4), 1–12 (2011). https://doi.org/10.1145/2010324.1964964

    Article  Google Scholar 

  89. V. L. Baruskov, A. T. Bazilevskij, A. F. Bogomolov, I. M. Bockshtein, V. A. Kotelnikov, M. A. Kronrod, Yu. S. Tyuflin, P. A. Chochia, et al., “Geology and morphology of the northern hemisphere of Venus,” Geotectonics 20, 256–270 (1986).

    Google Scholar 

  90. I. S. Gonorovskii, Radioengineering Circuits and Signals (Radio i Svyaz’, Moscow, 1986).

    Google Scholar 

  91. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Education, Upper Saddle River, N.J., 2010).

    Google Scholar 

  92. A. W. Gruen, “Adaptive least squares correlation: A powerful image matching technique,” S. Afr. J. Photogrammetry, Remote Sensing Cartography, No. 14, 175–187 (1985).

  93. E. L. Hall, “Almost uniform distributions for computer image enhancement,” IEEE Trans. Comput. C-23, 207–208 (1974). https://doi.org/10.1109/t-c.1974.223892

    Article  Google Scholar 

  94. R. M. Haralick, “Image texture survey,” in Fundamentals in Computer Vision (Cambridge Univ. Press, Cambridge, 1983), pp. 145–172.

    Google Scholar 

  95. R. M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE 67, 786–804 (1979). https://doi.org/10.1109/proc.1979.11328

    Article  Google Scholar 

  96. R. M. Haralick and L. G. Shapiro, “Image segmentation techniques,” Comput. Vision, Graphics, Image Process. 29, 100–132 (1985). https://doi.org/10.1016/s0734-189x(85)90153-7

    Article  Google Scholar 

  97. R. M. Haralick and L. Watson, “A facet model for image data,” Comput. Graphics Image Process. 15, 113–129 (1981). https://doi.org/10.1016/0146-664x(81)90073-3

    Article  Google Scholar 

  98. B. K. P. Horn, Robot Vision, MIT Electrical Engineering and Computer Science (MIT Press, 1986).

  99. T. S. Huang, G. J. Yang, and G. Y. Tang, “A fast two-dimensional median filtering algorithm,” IEEE Trans. Acoust., Speech, Signal Process. 27, 13–18 (1979). https://doi.org/10.1109/tassp.1979.1163188

    Article  Google Scholar 

  100. R. A. Hummel, “Image enhancement by histogram transformation,” Comput. Graphics Image Process. 6, 184–195 (1977). https://doi.org/10.1016/s0146-664x(77)80011-7

    Article  Google Scholar 

  101. History of the Institute for Information Transmission Problems. http://iitp.ru/ru/about/history.

  102. Iconics. https://ru.wikipedia.org/wiki/%d0%98%d0% ba%d0%be%d0%bd%d0%b8%d0%ba%d0%b0

  103. “Iconics,” Tr. Gos. Opt. Inst. 178 (1978); 185 (1982); 191 (1984); 198 (1987); 204 (1988); 213 (1992); 207 (1991).

  104. Iconics. Collection of Sci. Papers, Ed. by D. S. Lebedev and V. A. Garmash (Nauka, Moscow, 1968).

    Google Scholar 

  105. Iconics. Spatial Image Filtering. Photographic Systems. Collection of Sci. Papers, Ed. by D. S. Lebedev (Nauka, Moscow, 1970).

    Google Scholar 

  106. Iconics. Digital Holography. Image Processing: Collection of Sci. Papers, Ed. by D. S. Lebedev (Nauka, Moscow, 1975).

    Google Scholar 

  107. Iconics. Digital Processing and Filtering of Images, Ed. by D. S. Lebedev, Voprosy Kibernetiki, Vol. 38 (Sovetskoe Radio, Moscow, 1978).

  108. Iconics. Theory and Methods of Image Processing: Collection of Sci. Papers, Ed. by D. S. Lebedev and N. R. Popova (Nauka, Moscow, 1983).

    Google Scholar 

  109. Image Coding and Processing, Ed. by V. V. Zyablov and D. S. Lebedev (Nauka, Moscow, 1988).

    Google Scholar 

  110. Iconics. Digital Processing of Video Information (Nauka, Moscow, 1989).

  111. Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances, Ed. by J. Serra (Academic, New York, 1988).

    Google Scholar 

  112. L. D. Ivanov, Variations of Sets and Functions (Nauka, Moscow, 1975).

    Google Scholar 

  113. A. K. Jain, “Advances in mathematical models for image processing,” Proc. IEEE 69, 502–528 (1981). https://doi.org/10.1109/proc.1981.12021

    Article  Google Scholar 

  114. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data (Prentice Hall, 1988).

    Google Scholar 

  115. A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using Gabor filters,” Pattern Recognit. 24, 1167–1186 (1991). https://doi.org/10.1016/0031-3203(91)90143-s

    Article  Google Scholar 

  116. R. Jain, R. Kasturi, and B. Schunk, Machine Vision (McGraw-Hill, New York, 1995).

    Google Scholar 

  117. A. K. Jayanthy, N. Sujatha, and M. Ramasubba Reddy, “Measuring blood flow: Techniques and applications—A review,” Int. J. Res. Rev. Appl. Sci. 6, 203–216 (2011).

    Google Scholar 

  118. J. Jeon, H. Lee, H. Kang, and S. Lee, “Scale-aware structure-preserving texture filtering,” Comput. Graphics Forum 35 (7), 77–86 (2016). https://doi.org/10.1111/cgf.13005

    Article  Google Scholar 

  119. B. I. Justusson, “Median filtering: Statistical properties,” in Two-Dimensional Digital Signal Prcessing II, Ed. by T. S. Huang, Topics in Applied Physics, Vol. 43 (Springer, Berlin, 1981), pp. 161–196. https://doi.org/10.1007/bfb0057597

    Book  Google Scholar 

  120. L. Karacan, E. Erdem, and A. Erdem, “Structure-preserving image smoothing via region covariances,” ACM Trans. Graphics 32 (6), 1–11 (2013). https://doi.org/10.1145/2508363.2508403

    Article  Google Scholar 

  121. V. N. Karnaukhov, V. I. Kober, M. G. Mozerov, and P. A. Chochia, “Design of a block-software system for a posteriori analysis and restoration of multispectral images,” J. Commun. Technol. Electron. 64, 827–833 (2019). https://doi.org/10.1134/s1064226919080229

    Article  Google Scholar 

  122. A. V. Karnaukhov, N. S. Merzlyakov, and O. P. Milyukova, “Multifunctional digital model of the system of image distortion and restoration,” Komp’yuternaya Opt., No. 20, 118–121 (2000).

  123. A. S. Kronrod, “On functions of two variables,” Usp. Mat. Nauk 5 (1), 24–134 (1950).

    MathSciNet  Google Scholar 

  124. M. A. Kronrod, “Library of B-71 programs for work with images,” in Iconics. Digital Holography. Image Processing (Nauka, Moscow, 1975), pp. 99–106.

    Google Scholar 

  125. M. A. Kronrod, “Several problems of image processing,” Vopr. Kibernetiki 38, 49–59 (1978).

    Google Scholar 

  126. M. A. Kronrod, “Photomap synthesis on a computer,” Geodeziya Kartografiya, No. 12, 45–49 (1975).

  127. M. A. Kronrod and P. A. Chochia, “Mathematical support of dialog image processing system,” in Iconics. Theory and Methods of Image Processing (Nauka, Moscow, 1983), pp. 87–99.

    Google Scholar 

  128. M. A. Kronrod and P. A. Chochia, “Specialized dialog image processing system,” in Systems of Scientific Research Automation: Abstracts of Reports of All-Union Meeting (Zinatne, Riga, 1975), pp. 341–342.

  129. M. A. Kronrod and P. A. Chochia, “Noise filtering on images using distribution median,” in Iconics. Theory and Methods of Image Processing (Nauka, Moscow, 1983), pp. 100–108.

    Google Scholar 

  130. L. D. Landau and E. M. Lifshits, Field Theory (Nauka, Moscow, 1967).

    Google Scholar 

  131. D. G. Lebedev, “Improvement of noise immunity of contour separation in systems of generalized quantization of images,” in Iconics (Nauka, Moscow, 1968), pp. 88–93.

    Google Scholar 

  132. D. G. Lebedev and D. S. Lebedev, “Quantization of images by means of contour separation,” Izv. Akad. Nauk SSSR: Tekh. Kibern., No. 6 (1964).

  133. D. G. Lebedev and D. S. Lebedev, “Discretization of image by separation and quantization of contours,” Izv. Akad. Nauk SSSR: Tekh. Kibern., No. 1, 88–92 (1965).

  134. D. G. Lebedev and D. S. Lebedev, “A novel approach of image quantization,”, No. 11, 44–46 (1964).

  135. D. S. Lebedev, “Introduction,” in Iconics (Nauka, Moscow, 1968), pp. 3–7.

    Google Scholar 

  136. D. S. Lebedev, “Iconics is the theory of reproducing images,” Vestn. Akad. Nauk SSSR, No. 6, 91–99 (1976).

  137. D. S. Lebedev, “Linear two-dimensional image transformations improving the noise immunity of transmission,” in Iconics (Nauka, Moscow, 1968), pp. 15–27.

    Google Scholar 

  138. D. S. Lebedev, A. A. Bezruk, and V. M. Novikov, “Markov probabilstic model of image,” (Institute for Information Transmission Problems, USSR Academy of Sciences, Moscow, 1983), pp. 3–14.

    Google Scholar 

  139. D. S. Lebedev, “One an algorithm of nonlinear filtering of fluctuation noise in image,” in Iconics. Spatial Image Filtering. Photographic Systems (Nauka, Moscow, 1970), pp. 21–25.

    Google Scholar 

  140. D. S. Lebedev, “Statistical model of image,” in Iconics, Spatial Image Filtering, Photoraphic Systems (Nauka, Moscow, 1970), pp. 53–65.

    Google Scholar 

  141. D. S. Lebedev, Statistical Theory of Processing Video Information: Tutorial (Mosk. Fiz.-Tekh. Inst., Moscow, 1988).

    Google Scholar 

  142. D. S. Lebedev, “Elastic model of image,” in Image Coding and Processing (Nauka, Moscow, 1988), pp. 61–69.

    Google Scholar 

  143. D. S. Lebedev, A. A. Bezruk, and V. M. Novikov, “Markov probabilistic model of image and drawing,” Preprint (Institute for Information Transmission Problems, USSR Academy of Sciences, Moscow, 1983).

    Google Scholar 

  144. D. S. Lebedev and O. P. Milyukova, “Image restoration based on Markov probabilistic model,” in Iconics. Theory and Methods of Image Processing (Nauka, Moscow, 1983), pp. 21–31.

    Google Scholar 

  145. D. S. Lebedev and O. P. Milyukova, “Linear restoration of images distorted by a linear converter,” in Iconics. Digital Processing and Filtering of Images (Sovetskoe Radio, Moscow, 1978), pp. 18–31.

  146. D. S. Lebedev, O. P. Milyukova, and A. V. Trushkin, “Restoration of images distorted by blurring by the pseudoinversion method,” in Holography and Information Processing (Nauka, Leningrad, 1976), pp. 75–80.

    Google Scholar 

  147. D. S. Lebedev and L. I. Mirkin, “Two-dimensional smoothing of images using a combined model of fragment,” in Iconics. Digital Holography. Image Processing (Nauka, Moscow, 1975), pp. 57–62.

    Google Scholar 

  148. D. S. Lebedev and V. M. Novikov, “Markov probabilistic model of drawing,” Preprint (Institute for Information Transmission Problems, USSR Academy of Sciences, Moscow, 1983), pp. 31–40.

    Google Scholar 

  149. D. S. Lebedev and I. I. Tsukkerman, Television and Information Theory (Energiya, Moscow, 1965).

    Google Scholar 

  150. D. S. Lebedev and L. P. Yaroslavskii, “Nonlinear filtering of pulse noise on an image,” in Iconics. Spatial Image Filtering. Photographic Systems (Moscow, 1970), pp. 26–34.

    Google Scholar 

  151. J.-S. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 165–168 (1980). https://doi.org/10.1109/TPAMI.1980.4766994

    Article  Google Scholar 

  152. J.-S. Lee, “Digital image smoothing and the sigma filter,” Comput. Vision, Graphics, Image Process. 24, 255–269 (1983). https://doi.org/10.1016/0734-189x(83)90047-6

    Article  Google Scholar 

  153. M. Liang, “Parameter estimation for defocus blurred image based on polar transformation,” Rev. Téc. Ing. Univ. Zulia 39, 333–338 (2016). https://doi.org/10.21311/001.39.1.37

    Article  Google Scholar 

  154. R. I. Litvan, Yu. I. Aver’yanov, and F. S. Bykovskaya, “Optimal gradation transform of images,” Tekh. Kino Televideniya, No. 2, 38–41 (1979).

  155. D. Marr, “Vision: A Computational Investigation into the Human Representation and Processing of Visual Information,” (1982).

  156. The Mars Surface (Nauka, Moscow, 1980).

  157. G. A. Mastin, “Adaptive filters for digital image noise smoothing: An evaluation,” Comput. Vision, Graphics, Image Process. 31, 103–121 (1985). https://doi.org/10.1016/s0734-189x(85)80078-5

    Article  Google Scholar 

  158. J. Matas and J. Kittler, “Spatial and feature space clustering: Applications in image analysis,” in Computer Analysis of Images and Patterns, Ed. by V. Hlaváč and R. Šára, Lecture Notes in Computer Science, Vol. 970 (Springer, Berlin, 1995), pp. 162–173. https://doi.org/10.1007/3-540-60268-2_293

    Book  Google Scholar 

  159. O. P. Milyukova, “A priori information in restoration problems,” Komp’yuternaya Opt. 14–15 (1), 148–155 (1995).

    Google Scholar 

  160. O. P. Milyukova, “Digital restoration of distorted images,” Preprint (Institute for Information Transmission Problems, USSR Academy of Sciences, Moscow, 1988), Vol. 56.

    Google Scholar 

  161. O. P. Milukova, “Fourier transform in restoration problem,” (SPIE, 1995), Vol. 2363, pp. 98–103. https://doi.org/10.1117/12.199618

    Article  Google Scholar 

  162. O. P. Milyukova, “Image discretization in problem of restoring a distorted video signal,” in Image Coding and Processing (Nauka, Moscow, 1988), pp. 117–128.

    Google Scholar 

  163. O. P. Milyukova, “Image as a function with bounded total variation,” in Iconics. Digital Processing of Video Information (Nauka, Moscow, 1989), pp. 19–25.

    Google Scholar 

  164. O. P. Milyukova, “Application of the regularization method in problems of restoring distorted images,” in Iconics, Theory and Methods of Image Processing (Nauka, Moscow, 1983), pp. 12–21.

    Google Scholar 

  165. O. P. Milukova and P. A. Chochia, “Application of metrical and topological image characteristics for distortion diagnostics in the signal restoration problem,” J. Commun. Technol. Electron. 63, 637–642 (2018). https://doi.org/10.1134/s1064226918060220

    Article  Google Scholar 

  166. O. P. Milyukova and P. A. Chochia, “On estimation of the image complexity by two-dimensional variations,” J. Commun. Technol. Electron. 58, 628–635 (2013). https://doi.org/10.1134/s1064226913060181

    Article  Google Scholar 

  167. L. I. Mirkin, “In-frame statistical characteristics of television images,” Vopr. Radioelektroniki, Ser. Tekh. Televideniya, No. 3, 68–77 (1975).

  168. M. M. Miroshnikov, “Iconics, processing and perception of an image,” Tr. Gos. Opt. Inst. 51 (185), 3–6 (1982).

    Google Scholar 

  169. M. M. Miroshnikov, V. F. Nesteruk, and N. N. Porfir’eva, “Iconics and its main problems,” Optiko-Mekh. Prom-st., No. 6, 3–7 (1977).

  170. M. Mozerov and J. van de Weijer, “Improved recursive geodesic distance computation for edge preserving filter,” IEEE Trans. Image Process. 26, 3696–3706 (2017). https://doi.org/10.1109/tip.2017.2705427

    Article  MathSciNet  PubMed  Google Scholar 

  171. M. Nagao and T. Matsuyama, “Edge preserving smoothing,” Comput. Graphics Image Process. 9, 394–407 (1979). https://doi.org/10.1016/0146-664x(79)90102-3

    Article  Google Scholar 

  172. S. Nishikawa, R. J. Massa, and J. C. Mott-Smith, “Area properties of television pictures,” IEEE Trans. Inf. Theory 11, 348–352 (1965). https://doi.org/10.1109/tit.1965.1053797

    Article  Google Scholar 

  173. M. A. Noll, “Cepstrum pitch determination,” J. Acoust. Soc. Am. 41, 293–309 (1967). https://doi.org/10.1121/1.1910339

    Article  CAS  PubMed  Google Scholar 

  174. Yu-I. Ohta, T. Kanade, and T. Sakai, “Color information for region segmentation,” Comput. Graphics Image Process. 13, 222–241 (1980). https://doi.org/10.1016/0146-664x(80)90047-7

    Article  Google Scholar 

  175. J. P. Oliveira, M. A. Figueiredo, and J. M. Bioucas-Dias, “Parametric blur estimation for blind restoration of natural images: Linear motion and out-of-focus,” IEEE Trans. Image Process. 23, 466–477 (2014). https://doi.org/10.1109/tip.2013.2286328

    Article  MathSciNet  PubMed  Google Scholar 

  176. J. P. Oliveira, M. A. T. Figueiredo, and J. M. Bioucas-Dias, “Blind estimation of motion blur parameters for image deconvolution,” in Pattern Recognition and Image Analysis, Ed. by J. Martí, J. M. Benedí, A. M. Mendonça, and J. Serrat, Lecture Notes in Computer Science, Vol. 4478 (Springer, Berlin, 2007), pp. 604–611. https://doi.org/10.1007/978-3-540-72849-8_76

    Book  Google Scholar 

  177. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981). https://doi.org/10.1109/proc.1981.12022

    Article  Google Scholar 

  178. N. K. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern Recognit. 26, 1277–1294 (1993). https://doi.org/10.1016/0031-3203(93)90135-j

    Article  Google Scholar 

  179. E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Stat. 33, 1065–1076 (1962). https://doi.org/10.1214/aoms/1177704472

    Article  MathSciNet  Google Scholar 

  180. O. Pichler, A. Teuner, and B. J. Hosticka, “A comparison of texture feature extraction using adaptive Gabor filtering, pyramidal and tree structured wavelet transforms,” Pattern Recognit. 29, 733–742 (1996). https://doi.org/10.1016/0031-3203(95)00127-1

    Article  Google Scholar 

  181. K. N. Plataniotis and A. N. Venetsanopoulos, “Color Image Compression,” in Color Image Processing and Applications. Digital Signal Processing (Springer, Berlin, 2000), pp. 279–328. https://doi.org/10.1007/978-3-662-04186-4_7

    Book  Google Scholar 

  182. W. K. Pratt, Digital Image Processing (John Wiley & Sons, New York, 1978).

    Google Scholar 

  183. I. M. Bockstein, P. A. Chochia, M. A. Kronrod, and Yu. M. Gektin, “Processing of Mars surface images received from Phobos–2 space station,” in Lunar and Planetary Science 21st Conf. Part 1 (Lunar and Planetary Inst., Houston, 1990), pp. 101–102.

  184. A. F. Bogomolov, G. I. Skrypnik, I. M. Bockshtein, M. A. Kronrod, P. A. Chochia, M. Yu. Bergman, L. V. Kudrin, and A. V. Bashnin, “Processing of data from the survey of bands of the surface of Venus transmitted by the Venera-15 and Venera-16 stations,” Cosmic Res. 23, 151–161 (1985).

    Google Scholar 

  185. B. V. Nepoklonov, G. A. Leykin, A. S. Selivanov, Ye. P. Aleksashin, I. M. Bockshtein, M. A. Kronrod, P. A. Chochia, and L. P. Yaroslavskii, “ Processing and topographic interpretation of television panoramas obtained from landers of Automatic space stations Venera-9 and Venera-10” in Pervye panoramy poverkhnosti Venery (Nauka, Moscow, 1979), pp. 80–106.

    Google Scholar 

  186. I. M. Bockshtein, M. A. Kronrod, P. A. Chochia, and Gektin Yu M, “Processing of television panoramas of the Venus surface transmitted by the landers of the Venera-13 and Venera-14 space stations,” Kosm. Issled. 21, 519–531 (1983).

    Google Scholar 

  187. E. A. Gusev, A. A. Petushkov, F. R. Sosnin, and P. A. Chochia, “Radiographic monitoring with image processing by linear filtration,” Sov. J. Nondestr. Test. 20, 183–185 (1984).

    Google Scholar 

  188. S. J. Roan, J. K. Aggarwal, and W. N. Martin, “Multiple resolution imagery and texture analysis,” Pattern Recognit. 20, 17–31 (1987). https://doi.org/10.1016/0031-3203(87)90014-8

    Article  Google Scholar 

  189. A. Rosenfeld, Picture Processing by Computer (Academic, New York, 1969).

    Book  Google Scholar 

  190. A. Rosenfeld, “Quadtrees and pyramids for pattern recognition and image analysis,” in Proc. 5th Int. Conf. on Pattern Recognition (Miami Beach, Fla., 1980), pp. 802–811.

  191. A. Rosenfeld and L. Davis, “Image segmentation and image models,” Proc. IEEE 67, 764–772 (1979). https://doi.org/10.1109/proc.1979.11326

    Article  Google Scholar 

  192. A. Rosenfeld and A. C. Kak, Digital Picture Processing (Academic, New York, 1982). https://doi.org/10.1016/b978-0-12-597302-1.50007-4

    Book  Google Scholar 

  193. S. V. Rumyantsev, Radiation Defectoscopy (Atomizdat, Moscow, 1974).

    Google Scholar 

  194. S. V. Rumyantsev, A. S. Shtan’, and V. A. Gol’tsov, Reference Book on Radiation Methods of Nondesctructive Testing (Energoizdat, Moscow, 1982).

    Google Scholar 

  195. I. Scollar, B. Weidner, and T. S. Huang, “Image enhancement using the median and the interquartile distance,” Comput. Vision, Graphics, Image Process. 25, 236–251 (1984). https://doi.org/10.1016/0734-189x(84)90106-3

    Article  Google Scholar 

  196. A. V. Skorokhod, “Constructive methods of prescribing random processes,” Usp. Mat. Nauk 20 (3), 67–87 (1965).

    Google Scholar 

  197. Ya. K. Solomentsev and P. A. Chochia, “Application of neural networks to diagnose the type and parameters of image distortions,” J. Commun. Technol. Electron. 65, 1499–1504 (2020). https://doi.org/10.1134/S1064226920120165

    Article  Google Scholar 

  198. Yu. X. Song and Ya. M. Zhang, “Parameter estimation and restoration of motion blurred image,” Appl. Mech. Mater. 608–609, 855–859 (2014). https://doi.org/10.4028/www.scientific.net/amm.608-609.855

    Article  Google Scholar 

  199. T. G. Stockham Jr, “Image processing in the context of a visual model,” Proc. IEEE 60, 828–842 (1972). https://doi.org/10.1109/proc.1972.8782

    Article  Google Scholar 

  200. A. S. Gurvich, S. V. Zagoruiko, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, and P. A. Chochia, “The structure of temperature inhomogeneities according to the observations of atmospheric refraction from the orbital station Salyut-6,” Dokl. Akad. Nauk SSSR 259, 1330–1333 (1981).

    Google Scholar 

  201. A. S. Selivanov, M. K. Naraeva, and I. F. Sinel’nikov, “Television systems for surveing Mars,” in Martian Surface (Nauka, Moscow, 1980), pp. 23–44.

    Google Scholar 

  202. A. S. Selivanov, V. P. Chemodanov, M. K. Naraeva, et al., “Television devices for transmitting panorama images from the Venera-9 and Venera-10 stations,” in The First Panoramas of the Venus Surface (Nauka, Moscow, 1979), pp. 45–56.

    Google Scholar 

  203. V. L. Barsukov, A. T. Basilevsky, G. A. Burba, N. N. Bobinna, V. P. Kryuchkov, R. O. Kuzmin, O. V. Nikolaeva, A. A. Pronin, L. B. Ronca, I. M. Chernaya, V. P. Shashkina, A. V. Garanin, E. R. Kushky, M. S. Markov, A. L. Sukhanov, V. A. Kotelnikov, O. N. Rzhiga, G. M. Petrov, Yu. N. Alexandrov, A. I. Sidorenko, A. F. Bogomolov, G. I. Skrypnik, M. I. Bergman, L. V. Kudrin, I. M. Bockshtein, M. A. Kronrod, P. A. Chochia, Yu. S. Tyuflin, S. A. Kadnichansky, and E. L. Akim, “The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16,” J. Geophys. Res.: Solid Earth 91, 378–398 (1986). https://doi.org/10.1029/jb091ib04p0d378

    Article  Google Scholar 

  204. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1974).

    Google Scholar 

  205. S. Tiwari, V. P. Shukla, A. K. Singh, and S. Biradar, “Review of motion blur estimation techniques,” J. Image Graphics 1 (4), 176–184 (2013). https://doi.org/10.12720/joig.1.4.176-184

    Article  Google Scholar 

  206. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Sixth Int. Conf. on Computer Vision, Bombay, India, 1998 (IEEE, 1998), pp. 839–846. https://doi.org/10.1109/iccv.1998.710815

  207. F. Tomita and S. Tsuji, “Extraction of multiple regions by smoothing in selected neighborhoods,” IEEE Trans. Syst., Man, Cybern. 7, 107–109 (1977). https://doi.org/10.1109/tsmc.1977.4309664

    Article  Google Scholar 

  208. J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, Reading, Mass., 1971).

    Google Scholar 

  209. O. Vainio, Y. Neuvo, and S. E. Butner, “A signal processor for median-based algorithms,” IEEE Trans. Acoust., Speech, Signal Process. 37, 1406–1414 (1989). https://doi.org/10.1109/29.31294

    Article  Google Scholar 

  210. L. Van Gool, P. Dewaele, and A. Oosterlinck, “Texture analysis Anno 1983,” Comput. Vision, Graphics, Image Process. 29, 336–357 (1983). https://doi.org/10.1016/0734-189x(85)90130-6

    Article  Google Scholar 

  211. G. I. Vasilenko and A. M. Taratorin, Image Restoration (Radio i Svyaz’, Moscow, 1986).

    Google Scholar 

  212. A. S. Selivanov, Yu. M. Gektin, V. V. Kerzhanovich, M. K. Naraeva, A. S. Panfilov, V. P. Chemodanov, and P. A. Chochia, “Survey of the Venus cloud layer from the Venera-9 orbiter,” Cosmic Res. 16, 698 (1978).

    Google Scholar 

  213. A. G. Vitushkin, The Estimate of Complexity of Tabulation Problem (Fiz. Mat. Lit., Moscow, 1959). https://doi.org/10.4213/tmf1868

    Book  Google Scholar 

  214. V. A. Vittikh, V. V. Sergeev, and V. A. Soifer, Image Processing in Automated Systems of Scientific Research (Nauka, Moscow, 1982).

    Google Scholar 

  215. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Wiley & Sons, New York, 1965).

    Google Scholar 

  216. R. Wallis, “An approach to the space-variant restoration and enhancement of images,” in Image Science Mathematics; Proc. Symp. Mathematical Problems in Image Science, Monterey, Calif., 1976 (Western Periodicals, North Hollywood, Calif., 1977), pp. 10–12.

  217. D. Wang, A. Vagnucci, and C. Li, “Gradient inverse weighted smoothing scheme and the evaluation of its performance,” Comput. Graphics Image Process. 15, 167–181 (1981). https://doi.org/10.1016/0146-664x(81)90077-0

    Article  Google Scholar 

  218. W. Frei, “Image enhancement by histogram hiperbolization,” Comput. Graphics Image Process. 6, 286–294 (1977). https://doi.org/10.1016/S0146-664X(77)80030-0

    Article  Google Scholar 

  219. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, Ed. by New York (Wiley, 1949).

    Book  Google Scholar 

  220. O. Wirjadi, Survey of 3D Image Segmentation Methods (Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern, 2007).

    Google Scholar 

  221. J. W. Woods, “Two-dimensional discrete Markovian fields,” IEEE Trans. Inf. Theory 18, 232–240 (1972). https://doi.org/10.1109/tit.1972.1054786

    Article  MathSciNet  Google Scholar 

  222. Sh. Wu, Z. Lu, E. Ong, and W. Lin, “Blind image blur identification in cepstrum domain,” in 2007 16th Int. Conf. on Computer Communications and Networks (IEEE, 2007), pp. 1166–1171. https://doi.org/10.1109/icccn.2007.4317977

  223. X-Ray Equipment: Reference Book, Ed. by V. V. Klyuev (Mashinostroenie, Moscow, 1980).

    Google Scholar 

  224. L. Xu, Q. Yan, Ya. Xia, and J. Jia, “Structure extraction from texture via relative total variation,” ACM Trans. Graphics 31 (6), 1–10 (2012). https://doi.org/10.1145/2366145.2366158

    Article  Google Scholar 

  225. J. Yan and D. Sakrison, “Encoding of images based on a two-component source model,” IEEE Trans. Commun. 25, 1315–1322 (1977). https://doi.org/10.1109/tcom.1977.1093765

    Article  Google Scholar 

  226. L. P. Yaroslavskii, Introduction to Digital Image Processing (Sovetskoe Radio, Moscow, 1979).

    Google Scholar 

  227. L. P. Yaroslavskii, Digital Signal Processing in Optics and Holography: Introduction to Digital Optics (Radio i Svyaz’, Moscow, 1987).

    Google Scholar 

  228. L. P. Yaroslavskii, Applied Problems of Digital Optics, Advances in Electronics and Electron Physics, Vol. 66 (Academic, 1986). https://doi.org/10.1016/s0065-2539(08)60922-1

  229. L. P. Yaroslavskij and R. A. Pribilova, “Vergleich von Algorithmen für die Filtering von Punktrauchen in Bildern,” Bild und Ton, No. 6, 177–180 (1985).

  230. S. A. Yelmanov and P. A. Chochia, “Device for computing order statistics,” USSR Patent No. 1704148 A1 (1989).

  231. X. Zhu, S. Cohen, S. Schiller, and P. Milanfar, “Estimating spatially varying defocus blur from a single image,” IEEE Trans. Image Process. 22, 4879–4891 (2013). https://doi.org/10.1109/tip.2013.2279316

    Article  MathSciNet  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses his gratitude to all the staff of the Institute for Information Transmission Problems of the Russian Academy of Sciences who have worked at the Iconics Laboratory since its establishment.

Funding

The Institute for Information Transmission Problems of the Russian Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chochia.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Pavel Antonovich Chochia, Dr. (Eng.), Leading Researcher, has been working at the Institute for Information Transmission Problems of the Russian Academy of Sciences since 1973. Scientific interests: models, methods, algorithms and systems of video information processing. Author of more than 130 published scientific papers. Participated in numerous projects for the development of digital video analysis and processing methods, including projects for processing images of Mars and Venus transmitted by automatic interplanetary stations. His research and developments include image models; methods and algorithms for image restoration, enhancement and segmentation; flaw detection and classification techniques for electronic chip quality control; methods and algorithms of image analysis in medical diagnostics and industrial defectoscopy among many others. Participated in the creation of specialized software systems for research in the field of video information processing.

Translated by D. Sventsitsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chochia, P.A. Image Analysis and Processing Theory, Methods, and Algorithms. Review of Research at the Iconics Laboratory of the Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute). Pattern Recognit. Image Anal. 33, 1168–1241 (2023). https://doi.org/10.1134/S1054661823040119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661823040119

Keywords:

Navigation