Skip to main content
Log in

Magnetic Resonance Image of Breast Segmentation by Multi-Level Thresholding Using Moth-Flame Optimization and Whale Optimization Algorithms

  • APPLICATION PROBLEMS
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

In this paper, we propose two breast lesion segmentation methods in dynamic contrast enhanced magnetic resonance image (DCE-MRI) using moth-flame optimizer (MFO) and whale optimization algorithm (WOA). In the first method, at the outset, MR images are denoised using the median filter in the preprocessing step. After that, a multi-level thresholding technique using MFO is used to search the suitable thresholds through entropy maximization to segment the lesions in MR images. In the second method, WOA is used in place of MFO in the framework of the first method. Segment the breast DCE-MRI lesion detection using MFO and WOA. The proposed methods are applied to 50 Sagittal T2-weighted DCE-MRI slices of 10 patients. The proposed methods are compared with algorithms such as particle swarm optimizer (PSO), improved Markov random field (IMRF), hidden Markov random field (HMRF), and conventional Markov random field (CMRF) methods. The high accuracy level of 99.88% and sensitivity 95.51% are achieved using the proposed MFO segmentation method. The high accuracy and sensitivity level of another proposed method WOA are achieved, 99.78 and 93.09%, respectively. The experimental results demonstrate that the proposed methods perform better than other methods in breast lesion segmentation in DCE-MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. C. Agner, S. Soman, E. Libfeld, M. McDonald, K. Thomas, S. Englander, M. A. Rosen, D. Chin, J. Nosher, and A. Madabhushi, “Textural kinetics: A novel dynamic contrast enhanced (DCE)-MRI feature for breast lesion classification,” J. Digital Imaging 24, 446-463 (2011). https://doi.org/10.1007/s10278-010-9298-1

    Article  Google Scholar 

  2. S. C. Agner, J. Xu, M. Rosen, S. Karthigeyan, S. Englander, and A. Madabhushi, “Spectral embedding based active contour (SEAC): Application to breast lesion segmentation on DCE-MRI,” Proc. SPIE 7963, 796305 (2011). https://doi.org/10.1117/12.878218

    Article  Google Scholar 

  3. R. Azmi, and N. Norozi, “A new markov random field segmentation method for breast lesion segmentation in MR images,” J. Medical Signals Sensors 1, 156–164 (2011).

    Google Scholar 

  4. S. Behrens, H. Laue, M. Althaus, T. Boehler, B. Kuemmerlen, H. K. Hahn, and H. O. Peitgen, “Computer assistance for MR based diagnosis of breast cancer: Present and future challenges,” Comput. Med. Imaging Graphics 31, 236–247 (2007). https://doi.org/10.1016/j.compmedimag.2007.02.007

    Article  Google Scholar 

  5. F. Z. Belgrana, N. Benamrane, and S. A. Kasmi, “A hybrid segmentation approach of brain magnetic resonance imaging using region-based active contour with a similarity factor and multi-population genetic algorithm,” Pattern Recognit. Image Anal. 30, 765–777 (2020). https://doi.org/10.1134/S1054661820040069

    Article  Google Scholar 

  6. M. D. Bohare, A. N. Cheeran, and V. G. Sarode, “Analysis of breast MRI images using wavelets for detection of cancer,” Int. J. Comput. Appl. 4, 1–3 (2011).

    Google Scholar 

  7. D. Boukerroui, O. Basset, N. Guérin, and A. Baskurt, “Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation,” Europ. J. Ultrasound 8, 135–144 (1998). https://doi.org/10.1016/S0929-8266(98)00062-7

    Article  Google Scholar 

  8. F. Bray, J.-S. Ren, E. Masuyer, and J. Ferlay, “Global estimates of cancer prevalence for 27 sites in the adult population in 2008,” Int. J. Cancer 132, 1133–1145 (2013).  https://doi.org/10.1002/ijc.27711

    Article  Google Scholar 

  9. S. P. Chatzis, and G. Tsechpenakis, “The infinite hidden Markov random field model,” IEEE Trans. Neural Networks 21, 1004–1014 (2010). https://doi.org/10.1109/TNN.2010.2046910

    Article  Google Scholar 

  10. W. Chen, M. L. Giger, and U. Bick, “A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images,” Europ. J. Ultrasound 1, 63–72 (2006). https://doi.org/10.1016/j.acra.2005.08.035

    Article  Google Scholar 

  11. W. Chen, M. L. Giger, H. Li, U. Bick, and G. M. Newstead, “Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images,” Magn. Reson. Med. 58, 562–571 (2007). https://doi.org/10.1002/mrm.21347

    Article  Google Scholar 

  12. K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Matt, M. Pringle, L. Tarbox, and F. Prior, “The cancer imaging archive (TCIA): Maintaining and operating a public information repository,” J. Digital imaging 26, 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  13. G. R. Cross, and A. K. Jain, “Markov random field texture models,” IEEE Trans. Pattern Anal. Mach. Intell. 5, 25–39 (1983). https://doi.org/10.1109/TPAMI.1983.4767341

    Article  Google Scholar 

  14. M. A. Elaziz, A. A. Ewees, and A. E. Hassanien, “Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation,” Expert Syst. Appl. 83, 242–256 (2017). https://doi.org/10.1016/j.eswa.2017.04.023

    Article  Google Scholar 

  15. J. Ferlay, I. Soerjomataram, M. Ervik, et al., “Globocan 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11, GLOBOCAN (2013). http://globocan.iarc.fr.

  16. P. Filipczuk, T. Fevens, A. Krzyżak, and R. Monczak, “Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies,” Trans. Med. Imaging 30, 2169–2178 (2013). https://doi.org/10.1109/TMI.2013.2275151

    Article  Google Scholar 

  17. K. G. A. Gihuijs, M. L. Giger, and U. Bick, “A method for computerized assessment of tumor extent in contrast-enhanced MR images of the breast,” Comput.-Aided Diagnosis in Med. Imaging, pp. 305–310 (1999).

  18. Y. B. Hagos, A. G. Mérida, and J. Teuwen, “Improving breast cancer detection using symmetry information with deep learning,” in Image Analysis for Moving Organ, Breast, and Thoracic Images. RAMBO 2018, BIA 2018, TIA 2018, Ed. by D. Stoyanov, Z. Taylor, B. Kainz, G. Maicas, R. R. Beichel, A. Martel, L. Maier-Hein, K. Bhatia, T. Vercauteren, O. Oktay, G. Carneiro, A. P. Bradley, J. Nascimento, H. Min, M. S. Brown, B. Lassen-Schmidt, K. Mori, J. Petersen, R. San José Estépar, A. Schmidt-Richberg, and C. Veiga, Lecture Notes in Computer Science, vol. 11040 (Springer, Cham, 2018), pp. 90–97 (2018). https://doi.org/10.1007/978-3-030-00946-5_10

    Book  Google Scholar 

  19. V. Hamy, N. Dikaios, S. Punwani, A. Melbourne, A. Latifoltojar, J. Makanyanga, M. Chouhan, E. Helbren, A. Menys, S. Taylor, and D. Atkinson, “Respiratory motion correction in dynamic MRI using robust data decomposition registration – Application to DCE-MRI,” Med. Image Anal. 18, 301–313 (2014). https://doi.org/10.1016/j.media.2013.10.016

    Article  Google Scholar 

  20. E. A. Hauth, C. Stockamp, S. Maderwald, A. Mühler, R. Kimmig, H. Jaeger, J. Barkhausen, and M. Forsting, “Evaluation of the three-time-point method for diagnosis of breast lesions in contrast-enhanced MR mammography,” Clin. Imaging 30, 160–165 (2006). https://doi.org/10.1016/j.clinimag.2005.11.005

    Article  Google Scholar 

  21. P. Jedlicka, and T. Ryba, “Genetic algorithm application in image segmentation,” Pattern Recognit. Image Anal. 26, 497–501 (2016). https://doi.org/10.1134/S105466181603007X

    Article  Google Scholar 

  22. A. Karahaliou, K. Vassiou, S. Skiadopoulos, T. Kanavou, A. Yiakoumelos, and L. Costaridou, “Quantifying heterogeneity of lesion uptake in dynamic contrast-enhanced mri for breast cancer diagnosis,” J. Instrum. 4, 1–6 (2009). https://doi.org/10.1088/1748-0221/4/07/P07014

    Article  Google Scholar 

  23. K. L. Kashyap, M. K. Bajpai, and P. Khanna, “An efficient algorithm for mass detection and shape analysis of different masses present in digital mammograms,” Multimedia Tools Appl. 77, 9249–9269 (2018). https://doi.org/10.1007/s11042-017-4751-5

    Article  Google Scholar 

  24. F. Khalvati, C. Gallego-Ortiz, S. Balasingham, and A. L. Martel, “Automated segmentation of breast in 3‑D MR images using a robust atlas,” IEEE Trans. Med. Imaging 34, 116–125 (2015). https://doi.org/10.1109/TMI.2014.2347703

    Article  Google Scholar 

  25. C. K. Kuhl, P. Mielcareck, S. Klaschik, C. Leutner, E. Wardelmann, J. Gieseke, and H. H. Schild, “Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions,” Radiology 211 (1), 101–110 (1999). https://doi.org/10.1148/radiology.211.1.r99ap38101

    Article  Google Scholar 

  26. M. Kumar and K. K. Mehta, “A texture based tumor detection and automatic segmentation using seeded region growing method,” Int. J. Comput. Tech. Appl. 2, 855–859 (2011).

    Google Scholar 

  27. X. X. Li, X. J. Shen, H. P. Chen, and Y. C. Feng, “Image clustering segmentation based on SLIC superpixel and transfer learning,” Pattern Recognit. Image Anal. 27, 838–845 (2017). https://doi.org/10.1134/S1054661817040101

    Article  Google Scholar 

  28. X. Liang, K. Ramamohanara, H. Frazer, and Q. Yang, “Lesion segmentation in dynamic contrast-enhanced MRI of breast,” in Int. Conf. on Digital Image Computing Techniques and Applications (DICTA), Fremantle, Australia, 2012 (IEEE, 2012), pp. 1–8.  https://doi.org/10.1109/DICTA.2012.6411734

  29. W. Lingle, B. J. Erickson, M. L. Zuley, R. Jarosz, E. Bonaccio, and J. N. G. Filippini, “Radiology data from the cancer genome atlas breast invasive carcinoma collection,” Cancer Imaging Arch. 10, K9 (2016).

    Google Scholar 

  30. R. M. Mann, C. K. Kuhl, K. Kinkel, and C. Boetes, “Breast MRI: guidelines from the European society of breast imaging,” Europ. Radiol. 18, 1307–1318 (2008). https://doi.org/10.1007/s00330-008-0863-7

    Article  Google Scholar 

  31. A. G. Merida, M. Kallenberg, R. M. Mann, and N. Karssemeijer, “Breast segmentation and density estimation in breast MRI: a fully automatic framework,” IEEE J. Biomed. Health Inf. 19, 349–357 (2015). https://doi.org/10.1109/JBHI.2014.2311163

    Article  Google Scholar 

  32. S. Mirjalili, “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm,” Knowl.-Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  33. S. Mirjalili, and A. Lewis, “The whale optimization algorithm,” Adv. Eng. Software 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  34. M. Mlejnek, P. Ermes, A. Vilanova, R. van der Rijt, H. van den Bosch, F. Gerritsen, and M. E. Gröller, “Application-oriented extensions of profile flags,” in Proc. of the Eighth Joint Eurographics / IEEE VGTC Conf. on Visualization, Lisbon, 2006, Ed. by B. S. Santos, T. Ertl, and K. Joy (Eurographics Association, Goslar, Germany, 2006), pp. 339–446 (2006).

  35. A. Oliver, J. Freixenet, J. Martí, E. Pérez, J. Pont, E. R. E. Denton, and R. Zwiggelaar, “A review of automatic mass detection and segmentation in mammographic images,” Med. Image Anal. 14, 87–110 (2010). https://doi.org/10.1016/j.media.2009.12.005

    Article  Google Scholar 

  36. S. Ribes, D. D. laurent, N. Decoster, E. Gonneau, L. Risser, V. Feillel, and O. Caselles, “Automatic segmentation of breast MR images through a Markov random field statistical model,” IEEE Trans. Med. Imaging 33(10), 1986–1996 (2014). https://doi.org/10.1109/TMI.2014.2329019

    Article  Google Scholar 

  37. C. Shannon, and W. Weaver, “The mathematical theory of communication,” in The Mathematical Theory of Communication (Univ. of Illinois Press, Urbana, Ill., 1964).

    MATH  Google Scholar 

  38. J. Shi, B. Sahiner, H.-P. Chan, J. Ge, L. Hadjiiski, M. A. Helvie, A. Nees, Y.-T. Wu, J. Wei, C. Zhou, Y. Zhang, and J. Cui, “Characterization of mammographic masses based on level set segmentation with new image features and patient information,” Med. Phys. 35, 280–290 (2008). https://doi.org/10.1118/1.2820630

    Article  Google Scholar 

  39. V. K. Singh, S. Romani, H. A. Rashwan, F. Akram, N. Pandey, M. K. Sarkar, S. Abdulwahab, J. Torrents-Barrena, A. Saleh, M. Arquez, M. Arenas, and D. Puig, “Conditional generative adversarial and convolutional networks for x-ray breast mass segmentation and shape classification,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, Ed. by A. Frangi, J. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger, Lecture Notes in Computer Science, vol. 11071 (Springer, Cham, 2018), pp. 833–840 (2018). https://doi.org/10.1007/978-3-030-00934-2_92

    Book  Google Scholar 

  40. A. Tharwat, “Classification assessment methods,” Appl. Comput. Inf. 17, 168–192 (2021). https://doi.org/10.1016/j.aci.2018.08.003

    Article  Google Scholar 

  41. I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Inf. Process. Lett. 85, 317–325 (2002). https://doi.org/10.1016/S0020-0190(02)00447-7

    Article  MathSciNet  MATH  Google Scholar 

  42. A. H. Tunçay and I. Akduman, “Realistic microwave breast models through t1-weighted 3-D MRI data,” IEEE Trans. Biomed. Eng. 62, 688–698 (2015).  https://doi.org/10.1109/TBME.2014.2364015

    Article  Google Scholar 

  43. Q. Wu, M. Salganicoff, A. Krishnan, D. S. Fussell, and M. K. Markey, “Interactive lesion segmentation on dynamic contrast enhanced breast MR using a Markov model,” Proc. SPIE 6144, 61444M (2006). https://doi.org/10.1117/12.654308

    Article  Google Scholar 

  44. J. Yao, J. Chen, and C. Chow, “Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform, IEEE J. Sel. Top. Signal Process. 3, 94–100 (2009). https://doi.org/10.1109/JSTSP.2008.2011110

    Article  Google Scholar 

  45. S. Ye, A. Nedzvedz, F. Ye, and S. Ablameyko,  “Segmentation and feature extraction of endoscopic images for making diagnosis of acute appendicitis,” Pattern Recognit. Image Anal. 29, 738–749 (2019). https://doi.org/10.1134/S1054661819040205

    Article  Google Scholar 

  46. Y. Q. Zhan, and D. G. Shen, “Deformable segmentation of 3D ultrasound prostate images using statistical texture matching method,” Trans. Med. Imaging 25, 256–272 (2006). https://doi.org/10.1109/TMI.2005.862744

    Article  Google Scholar 

  47. H. Zhang, and S. W. Foo, “Computer aided detection of breast masses from digitized mammograms,” Trans. Inf. Syst. E89-D, 1955–1961 (2006). https://doi.org/10.1093/ietisy/e89-d.6.1955

    Article  Google Scholar 

  48. Y. Zheng, S. Baloch, S. Englander, M. D. Schnall, and D. Shen, “Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007, Ed. by N. Ayache, S. Ourselin, and A. Maeder, Lecture Notes in Computer Science, vol. 4792 (Springer, Berlin, 2007), pp. 393–401 (2007). https://doi.org/10.1007/978-3-540-75759-7_48

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipak Kumar Patra, Tapas Si, Sukumar Mondal or Prakash Mukherjee.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article is a completely original work of its authors; it has not been published before and will not be sent to other publications until the PRIA Editorial Board decides not to accept it for publication.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Dipak Kumar Patra. Dipak Kumar Patra holds BSc and MSc in Computer Science from Vidyasagar University Midnapore, WB, India, and MTech in Computer Science and Engineering from Maulana Abul Kalam Azad University (formerly West Bengal University of Technology). He is currently Research Scholar in the department of Computer Science, Raja Narendralal Khan Women’s College (Autonomous), Midnapur – 721102, West Bengal, India. He publishes 20 papers in the reputed international journals. He serves as a reviewer for journal of Springer. His research interests include swarm intelligence and medical image processing.

Tapas Si. Dr. Tapas Si holds BTech in Computer Science and Engineering from Maulana Abul Kalam Azad University (formerly West Bengal University of Technology), MTech in Information Technology from National Institute of Technology Durgapur, WB, India, and PhD in Engineering from the same university. He is currently an assistant professor in the department of Computer Science and Engineering in Bankura Unnayani Institute of Engineering, Bankura, West Bengal, India. He publishes 51 papers in the reputed international journals/conferences. He serves as a reviewer for journals of Springer, Elsevier, IEEE, etc. His research interests include machine learning, swarm intelligence, medical image processing, and medical data mining. He is listed in Who’s Who in the World® 2016 and 2020, Marquis Who’s Who, USA. He is member of IEEE, Institute of Engineers (India), Soft Computing Research Society, Machine Intelligence Research Labs (USA).

Sukumar Mondal. Dr. Sukumar Mondal holds BSc, MSc, and PhD in Mathematics from Vidyasagar University Midnapore, WB, India. He is currently an associate professor in the department of Mathematics in Raja Narendralal Khan Women’s College (Autonomous), Midnapore, West Bengal, India. He publishes 28 papers in the reputed international journals/conferences. His research interests include graph theory, fuzzy graph theory, swarm intelligence, and medical image processing. He is the recipient of Scientist of the Year 2013 (NESA, New Delhi). He has completed 4 research projects and produces 3 PhD students.

Prakash Mukherjee. Dr. Prakash Mukherjee obtained his BSc with Honours in Mathematics from Vidyasagar University, Midnapore, West Bengal, India. In 2009, he obtained the Master Degree in Mathematics from Guru Ghasidas Vishwavidyalaya (Central University), Koni, Bilaspur, Chhattisgarh, India. In 2021, he awarded PhD degree in Pure Mathematics from University of Calcutta, Kolkata, West Bengal, India. He is currently a state aided college teacher in the department of Mathematics, Hijli College, Kharagpur, Midnapore-721306, West Bengal, India. He has published 16 research papers in international journals. His area of interests includes general topology, fuzzy topology, swarm intelligence, medical image processing, and graph theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipak Kumar Patra, Si, T., Mondal, S. et al. Magnetic Resonance Image of Breast Segmentation by Multi-Level Thresholding Using Moth-Flame Optimization and Whale Optimization Algorithms. Pattern Recognit. Image Anal. 32, 174–186 (2022). https://doi.org/10.1134/S1054661822010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661822010060

Keywords:

Navigation