Skip to main content
Log in

Topological Data Analysis in Materials Science: The Case of High-Temperature Cuprate Superconductors

  • APPLICATION PROBLEMS
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract—

Adequate formalization of problems is the most important task that has to be solved in order to apply the modern methods of so-called “machine learning” to real problems. The effective application of the metric, logical, regression, and other algorithms of machine learning becomes possible only when feature generation procedures and classes of objects are adequately defined. In this study, the theory of topological analysis of poorly formalized problems and the theory of analysis of labeled graphs were applied to the problem of predicting numerical characteristics of crystalline materials. The methods developed were tested on the problem of predicting the critical temperature of superconducting transition (Tc) of high-temperature cuprate superconductors (1450 structures). As a result, in a tenfold 6 : 1 cross-validation, the best model with a linear recognition operator yielded quite high average value of the correlation coefficient (r = 0.77) between the predicted and experimentally determined values of Tc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. Yu. Torshin and K. V. Rudakov, “On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification,” Pattern Recogn. Image Anal. 25 (4), 577–587 (2015).

    Article  Google Scholar 

  2. Yu. I. Zhuravlev, K. V. Rudakov, and I. Yu. Torshin, “Algebraic criteria for local solvability and regularity as an instrument for researching amino acid sequence morphology,” Trudy Mosk. Fiz.-Tekhn. Inst. 3 (4), 45–54 (2011).

    Google Scholar 

  3. Yu. I. Zhuravlev, “Correct algebras over sets of incorrect (heuristic) algorithms,” I: Cybern. 13 (4), 489–497 (1977).

    MATH  Google Scholar 

  4. I. Yu. Torshin and K.V. Rudakov, “Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach,” Pattern Recognition and Image Anal. 27 (1), 16–28 (2017).

    Article  Google Scholar 

  5. I. Yu. Torshin and K.V. Rudakov, “Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values,” Pattern Recogn. Image Anal. 27 (2), 184–199 (2017).

    Article  Google Scholar 

  6. I. Yu. Torshin and K. V. Rudakov, “On metric spaces arising during formalization of recognition and classification problems. Part 1: Properties of compactness,” Pattern Recogn. Image Anal. 26 (2), 274–284 (2016).

    Article  Google Scholar 

  7. I. Yu. Torshin and K. V. Rudakov, “On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties,” Pattern Recognit. Image Anal. 26 (3), 483–496 (2016).

    Article  Google Scholar 

  8. I. Yu. Torshin and K. V. Rudakov, “On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph,” Pattern Recogn. Image Anal. 24 (1), 11–23 (2014).

    Article  Google Scholar 

  9. I. Yu. Torshin and K. V. Rudakov, “On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 2. Local completeness of invariants of chemographs in view of the combinatorial theory of solvability,” Pattern Recogn. Image Anal. 24 (2), 196–208 (2014).

    Article  Google Scholar 

  10. I. Yu. Torshin and K. V. Rudakov, “On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables,” Pattern Recognit. Image Anal. 29 (4), 654–667 (2019).

    Article  Google Scholar 

  11. H. Fröhlich, “On the theory of superconductivity: the one-dimensional case,” Proc. R. Soc. Lond. Ser. A 223 (1154), 296–305 (1954). https://doi.org/10.1098/rspa.1954.0116

  12. F. von Oppen, Y. Peng, and F. Pientka, “Topological superconducting phases in one dimension,” in Topological Aspects of Condensed Matter Physics, École de Physique des Houches, Session CIII, 4–29 August 2014, Ed. by C. Chamon, M. O. Goerbig, R. Moessner, and L. F. Cugliandolop (Oxford University Press, Oxford, 2017), pp. 387–447. https://doi.org/10.1093/acprof:oso/9780198785781.003.0009

  13. K. Nishi, “Possible higher temperature superconductivity in the modulation-doped superlattice structure of cuprate superconductors,” Phys. Lett. A 382 (45), 3293–3297 (2018). https://doi.org/10.1016/j.physleta.2018.09.024

    Article  MathSciNet  Google Scholar 

  14. V. A Khodel., J. W. Clark, and M. V. Zverev, “Toward a topological scenario for high-temperature superconductivity of copper oxides,” Phys. Lett. A 382 (45), 3281–3286 (2018). https://doi.org/10.1016/j.physleta.2018.09.017

    Article  Google Scholar 

  15. V. Lakhno, “A translation invariant bipolaron in the Holstein model and superconductivity,” SpringerPlus 5, Article 1277, 1–18 (2016). https://doi.org/10.1186/s40064-016-2975-x

    Article  Google Scholar 

  16. Y. Li, J. Terzic, P. G. Baity, D. Popović, G. D. Gu, Q. Li, A. M. Tsvelik, and J. M. Tranquada, “Tuning from failed superconductor to failed insulator with magnetic field,” Sci. Adv. 5 (6), eaav7686, 1–5 (2019). https://doi.org/10.1126/sciadv.aav7686

  17. H.-H. Kim, S. M. Souliou, M. E. Barber, E. Lefrancois, M. Minola, M. Tortora, R. Heid, N. Nandi, R. A. Borzi, G. Garbarino, A. Bosak, J. Porras, T. Loew, M. Konig, P. M. Moll, A. P. Mackenzie, B. Keimer, C. W. Hicks, and M. Le Tacon. “Uniaxial pressure control of competing orders in a high-temperature superconductor,” Sci. 362 (6418), 1040–1044 (2018). https://doi.org/10.1126/science.aat4708

    Article  Google Scholar 

  18. W. Ruan, X. Li, C. Hu, Z. Hao, H. Li, P. Cai, X. Zhou, D.-H. Lee, and Y. Wang. “Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor,” Nat. Phys. 14 (12), 1178–1182 (2018). https://doi.org/10.1038/s41567-018-0276-8

    Article  Google Scholar 

  19. J. Wu, A. T. Bollinger, X. He, and I. Bozovic, “Spontaneous breaking of rotational symmetry in copper oxide superconductors,” Nat. 547 (7664), 432–435 (2017). https://doi.org/10.1038/nature23290

    Article  Google Scholar 

  20. P. Giraldo-Gallo, J. A. Galvis, Z. Stegen, K. A. Modic, F. F. Balakirev, J. B. Betts, X. Lian, C. Moir, S. C. Riggs, J. Wu, A. T. Bollinger, X. He, I. Bozovic, B. J. Ramshaw, R. D. McDonald, G. S. Boebinger, and A. Shekhter, “Scale-invariant magnetoresistance in a cuprate superconductor,” Sci. 361 (6401), 479–481 (2018). https://doi.org/10.1126/science.aan3178

    Article  Google Scholar 

  21. Y. He, M. Hashimoto, D. Song, S.-D. Chen, J. He, I. M. Vishik, B. Moritz, D.-H. Lee, N. Nagaosa, J. Zaanen, T. P. Devereaux, Y. Yoshida, H. Eisaki, D. H. Lu, and Z.-X. Shen, “Rapid change of superconductivity and electron-phonon coupling through critical doping in Bi-2212,” Sci. 362 (6410), 62–65 (2018). https://doi.org/10.1126/science.aar3394

    Article  Google Scholar 

  22. H. C. Po, A. Vishwanath, and H. Watanabe, “Symmetry-based indicators of band topology in the 230 space groups,” Nat. Commun. 8, Article 50 (2017). https://doi.org/10.1038/s41467-017-00133-2

    Article  Google Scholar 

  23. K. Gotlieb, C.-Y. Lin, M. Serbyn, W. Zhang, C. L. Smallwood, C. Jozwiak, H. Eisaki, Z. Hussain, A. Vishwanath, and A. Lanzara A. “Revealing hidden spin-momentum locking in a high-temperature cuprate superconductor,” Sci. 362 (6420), 1271–1275 2018. https://doi.org/10.1126/science.aao0980

    Article  Google Scholar 

  24. P. Popčević, D. Pelc, Y. Tang, K. Velebit, Z. Anderson, V. Nagarajan, G. Yu, M. Požek, N. Barišić, and M. Greven, “Percolative nature of the direct-current paraconductivity in cuprate superconductors,” Quantum Mater. 3, Article 42, 1–6 (2018). https://doi.org/10.1038/s41535-018-0115-2

    Article  Google Scholar 

  25. M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, “A complete catalogue of high-quality topological materials,” Nat. 566 (7745), 480–485 (2019). https://doi.org/10.1038/s41586-019-0954-4

    Article  Google Scholar 

  26. Yu. I. Zhuravlev, “Correct algebras over sets of incorrect (heuristic) algorithms,” I: Cybern. 13 (4), 489–497 (1977);

    MATH  Google Scholar 

  27. II: Cybern. 13 (6), 814–821 (1977);

  28. III: Cybern. 14 (2), 188–197 (1978).

  29. K. T Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nat. 559 (7715), 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2

    Article  Google Scholar 

  30. J. Hill, G. Mulholland, K. Persson, R. Seshadri, C. Wolverton, and B. Meredig, “Materials science with large-scale data and informatics: Unlocking new opportunities,” MRS Bull. 41 (5), 399–409 (2016). https://doi.org/10.1557/mrs.2016.93

    Article  Google Scholar 

  31. Yu. I. Zhuravlev, N. N. Kiselyova, V. V. Ryazanov, O. V. Sen’ko, and A. A. Dokukin, “Design of inorganic compounds with the use of precedent-based pattern recognition methods,” Pattern Recogn. Image Anal. 21 (1), 95–103 (2011). https://doi.org/10.1134/S1054661811010135

    Article  Google Scholar 

  32. P. V. Balachandran, J. Theiler, J. M. Rondinelli, and T. Lookman, “Materials prediction via classification learning,” Sci. Rep. 5, Article 13285, 1–16 (2015). https://doi.org/10.1038/srep13285

  33. B. Bradlyn, L Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, “Topological quantum chemistry,” Nat. 547 (7663), 298–305 (2017). https://doi.org/10.1038/nature23268

    Article  Google Scholar 

  34. F. Grasselli and S. Baroni, “Topological quantization and gauge invariance of charge transport in liquid insulators,” Nat. Phys. 15, 967–972 (2019). https://doi.org/10.1038/s41567-019-0562-0

    Article  Google Scholar 

  35. I. Yu. Torshin, “The study of the solvability of the genome annotation problem on sets of elementary motifs,” Pattern Recogn. Image Anal. 21 (4), 652–662 (2011). https://doi.org/10.1134/S1054661811040171

    Article  Google Scholar 

  36. I. Yu. Torshin, “On solvability, regularity, and locality of the problem of genome annotation,” Pattern Recogn. Image Anal. 20 (3), 386–395 (2010).

    Article  Google Scholar 

  37. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, (Springer, New York, 2001).

    Book  Google Scholar 

  38. A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, “New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design,” Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. B58, Part 3 (1), 364–369 (2002). https://doi.org/10.1107/S0108768102006948

  39. Y. Xu, M. Yamazaki, and P. Villars, “Inorganic materials database for exploring the nature of material,” Jpn. J. Appl. Phys. 50 (11S), Article 11RH02 (2011). https://doi.org/10.1143/JJAP.50.11RH02

    Article  Google Scholar 

  40. I. Yu. Torshin, V. A. Alyoshin, and E. V. Antipov, “Synthesis and properties of the high-temperature superconductor HgBa2CuO4+d,” Sverkhprovodimost: Fiz., Khim., Tekh. 7 (10-12), 1579–1587 (1994).

    Google Scholar 

  41. S. N. Putilin, E. V. Antipov, O. Chmaissem, and   M.  Marezio,   “Superconductivity  at  94 K  in HgBa2Cu04+δ,” Nat. 362, 226–228 (1993). https://doi.org//10.1038/362226a0

  42. H. Maeda; Y. Tanaka; M. Fukutomi, and T. Asano, “A new high-Tc oxide superconductor without a rare Earth element,” Jpn. J. Appl. Phys. 27, Part 2 (2), L209–L210 (1988). https://doi.org/10.1143/JJAP.27.L209

  43. Ch. Chen, B. M. Wanklyn, E. Dieguez, A. J. Cook, J. W. Hodby, A. Schwartzbrod, A. Dabkowski, and H. Dabkowska, “Phase diagram and crystal growth of Pb2Sr2(YxCa1-x) Cu3O8+y,” J. Cryst. Growth 118 (1–2), 101–108 (1992). https://doi.org//10.1016/0022-0248(92)90054-M

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. O.A. Gromova for useful discussions on expert data analysis.

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-07-00356, 18-07-01022, 17-07-01419, 16-07-01129, and 18-07-00944.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Yu. Torshin or K. V. Rudakov.

Ethics declarations

We declare that we have no conflicts of interest related to the preparation and publication of this article.

Additional information

Ivan Yur’evich Torshin was born in 1972. He graduated from the Department of Chemistry, Moscow State University, in 1995, received candidates degrees in chemistry in 1997 and in physics and mathematics in 2011. Currently he is an associate professor at Moscow Institute of Physics and Technology, lecturer at the Faculty of Computational Mathematics and Cybernetics, Moscow State University, a senior researcher at the Federal Research Center Computer Science and Control, Russian Academy of Sciences, and a researcher at the Center for Big Data Storage and Analysis, Moscow State University (https://bigdata-msu.ru). He is the author of 485 publications in peer-reviewed journals in informatics, medicine, chemistry, and biology, 9 monographs: 5 in Russian and 4 in English (in the series “Bioinformatics in Post-genomic Era”, Nova Biomedical Publishers, NY, 2006-2009).

Konstantin Vladimirovich Rudakov was born in 1954. He is a Russian mathematician, academician of the Russian Academy of Sciences, Deputy Director of the Federal Research Center Computer Science and Control, Russian Academy of Sciences, Head of Department “Intelligence Systems” at the Moscow Institute of Physics and Technology, and academic advisor at the Center for Big Data Storage and Analysis, Moscow State University.

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torshin, I.Y., Rudakov, K.V. Topological Data Analysis in Materials Science: The Case of High-Temperature Cuprate Superconductors. Pattern Recognit. Image Anal. 30, 264–276 (2020). https://doi.org/10.1134/S1054661820020157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661820020157

Keywords:

Navigation