Pattern Recognition and Image Analysis

, Volume 28, Issue 1, pp 11–16 | Cite as

Regression Estimate of a Multidimensional Decision Function in the Two-Alternative Pattern-Recognition Problem

  • A. V. Lapko
  • V. A. Lapko
Mathematical Method in Pattern Recognition


The approximation properties of the regression estimate of the decision function in the two-alternative pattern-recognition problem are studied. This is used to find the dependence of the approximation quality on the discretization methods of the values of the random variable and its dimension.


pattern recognition decision function regression estimate asymptotic properties discretization methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Lapko and V. A. Lapko, “Nonparametric pattern recognition systems in the conditions of large learning samples,” Pattern Recogn. Image Anal. 20 (2), 129–136 (2010).CrossRefGoogle Scholar
  2. 2.
    R. Jensen and Q. Shen, Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches, Hoboken: John Wiley & Sons, 2008.CrossRefGoogle Scholar
  3. 3.
    A. Chaudhuri and H. Stenger, Survey Sampling Theory and Methods (Chapman & Hall, New York, 2005).CrossRefMATHGoogle Scholar
  4. 4.
    Encyclopedia of Survey Research Methods, Ed. by P. J. Lavrakas (Sage Publ., Thousand Oaks, 2008), Vols. 1–2.Google Scholar
  5. 5.
    S. A. Subbotin, “The way to form samples for solving classification problems by characteristics,” Inf. Sist. Upr. 35 (1), 143–150 (2013).Google Scholar
  6. 6.
    A. V. Lapko and V. A. Lapko, “Regression estimate of the multidimensional probability density and its properties,” Optoelectron., Instrum. Data Processing 50 (2), 148–153 (2014).CrossRefGoogle Scholar
  7. 7.
    A. V. Lapko and V. A. Lapko, “Construction of confidence limits for the probability density function on the basis of nonparametric estimation of the function,” Measur. Techn. 56 (12), 1354–1357 (2014).CrossRefGoogle Scholar
  8. 8.
    A. V. Lapko and V. A. Lapko, “Construction of confidence boundaries for the decision function in a two-alternative problem of pattern recognition,” Optoelectron., Instrum. Data Processing 51 (4), 372–377 (2015).CrossRefGoogle Scholar
  9. 9.
    D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, New York, 1992).CrossRefMATHGoogle Scholar
  10. 10.
    A. Hacine-Gharbi, P. Ravier, R. Harba, and T. Mohamadi, “Low bias histogram-based estimation of mutual information for feature selection,” Pattern Recogn. Lett. 33 (10), 1302–1308 (2012).CrossRefGoogle Scholar
  11. 11.
    M. C. Minnotte, S. R. Sain, and D. W. Scott, “Multivariate visualization by density estimation,” in Handbook of Data Visualization (2008), Part 3, pp. 389–413.CrossRefGoogle Scholar
  12. 12.
    P. A. Legg‚ P. L. Rosin‚ D. Marshall, and J. E. Morgan, “Improving accuracy and efficiency of registration by mutual information using Sturges’ histogram rule,” in Proc. 11th Annu. Conf. in Medical Image Understanding and Analysis (Aberystwyth, 2007), pp. 26–30.Google Scholar
  13. 13.
    V. A. Epanchenkov, “Nonparametric estimation of multidimensional probability density,” Teor. Veroyatn. Ee Prim. 14 (1), 156–161 (1969).MathSciNetGoogle Scholar
  14. 14.
    A. V. Lapko and V. A. Lapko, “Optimal selection of the number of sampling intervals in domain of variation of a one-dimensional random variable in estimation of the probability density,” Measur. Techn. 56 (7), 763–767 (2013).CrossRefGoogle Scholar
  15. 15.
    I. Heinhold and K. Gaede, Ingeniur Statistic (Springler Verlag, München, Wien, 1964).Google Scholar
  16. 16.
    R. Storm, Wahrscheinlichkeitsrechnung, mathematische Statistik und statistische Qualitätskontrolle (VEB Fachbuchverlag, 1974).MATHGoogle Scholar
  17. 17.
    H. A. Sturges, “The choice of a class interval,” J. Am. Stat. Assoc. 21 (153), 65–66 (1926).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Computational ModellingRussian Academy of Sciences, Siberian BranchKrasnoyarskRussia
  2. 2.Reshetnev Siberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations