Pattern Recognition and Image Analysis

, Volume 27, Issue 3, pp 444–457 | Cite as

Combining rules using local statistics and uncertainty estimates for improved ensemble segmentation

  • A. Al-Taie
  • H. K. Hahn
  • L. Linsen
Representation, Processing, Analysis, and Understanding of Images


Segmentation using an ensemble of classifiers (or committee machine) combines multiple classifiers’ results to increase the performance when compared to single classifiers. In this paper, we propose new concepts for combining rules. They are based (1) on uncertainties of the individual classifiers, (2) on combining the result of existing combining rules, (3) on combining local class probabilities with the existing segmentation probabilities at each individual segmentation, and (4) on using uncertainty-based weights for the weighted majority rule. The results show that the proposed local-statistics-aware combining rules can reduce the effect of noise in the individual segmentation result and consequently improve the performance of the final (combined) segmentation. Also, combining existing combining rules and using the proposed uncertainty- based weights can further improve the performance.


ensemble of classifiers combining rules image segmentation modified Fuzzy c-means 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, “A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data,” IEEE Trans. Med. Imag. 21 (3), 193–199 (2002).CrossRefGoogle Scholar
  2. 2.
    A. Al-Taie, H. K. Hahn, and L. Linsen, “Uncertainty estimation and visualization in probabilistic segmentation,” Comput. Graph. 39 (1), 48–59 (2014).CrossRefGoogle Scholar
  3. 3.
    X. Artaechevarria, A. Muoz-Barrutia, and C. O. de Solorzano, “Combination strategies in multi-atlas image segmentation: Application to brain MR data,” IEEE Trans. Med. Imag. 28 (8), 1266–1277 (2009).CrossRefGoogle Scholar
  4. 4.
    J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (New York, Plenum, 1981).CrossRefzbMATHGoogle Scholar
  5. 5.
    W. Cai, S. Chen, and D. Zhang, “Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation,” Pattern Recogn. 40 (3), 825–838 (2007).CrossRefzbMATHGoogle Scholar
  6. 6.
    S. Chen and D. Zhang, “Robust image segmentation using fcm with spatial constraints based on new kernelinduced distance metric,” IEEE Trans. Syst., Man Cybern.-Part B 34 (4), 1907–1916 (2004).CrossRefGoogle Scholar
  7. 7.
    K. S. Chuang, H. L. Tzeng, S. Chen, J. Wu, and T. J. Chen, “Fuzzy c-means clustering with spatial information for image segmentation,” Comput. Med. Imag. Graph. 30 (1), 9–15 (2006).CrossRefGoogle Scholar
  8. 8.
    T. G. Dietterich, “Ensemble methods in machine learning,” in Proc. 1st Int. Workshop on Multiple Classifier Systems (Springer-Verlag, London, 2000), pp. 1–15.Google Scholar
  9. 9.
    A. Fred and A. Jain, “Combining multiple clusterings using evidence accumulation,” IEEE Trans. Pattern Anal. Mach. Intellig. 27 (6), 835–850 (2005).CrossRefGoogle Scholar
  10. 10.
    J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,” IEEE Trans. Pattern Anal. Mach. Intellig. 20 (3), 226–239 (1998).CrossRefGoogle Scholar
  11. 11.
    L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms (Wiley-Intersci., 2004).CrossRefzbMATHGoogle Scholar
  12. 12.
    R. Langerak, U. A. van der Heide, A. N. T. J. Kotte, M. A. Viergever, M. van Vulpen, and J. P. W. Pluim, “Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (simple),” IEEE Trans. Med. Imag. 29 (12), 2000–2008 (2010).CrossRefGoogle Scholar
  13. 13.
    C. Li, C. Xu, A. Anderson, and J. Gore, “Mri tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework,” in Information Processing in Medical Imaging, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2009), Vol. 5636, pp. 288–299.CrossRefGoogle Scholar
  14. 14.
    M. Mignotte, “A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation,” IEEE Trans. Image Processing 19 (6), 1610–1624 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    MNI. Brainweb, simulated brain database (1997). Nov. 2012.Google Scholar
  16. 16.
    N. Mohamed, M. Ahmed, and A. Farag, “Modified fuzzy c-mean in medical image segmentation,” in Proc. IEEE Int. Conf. on Acoustics, Speeeh, and Signal Processing (Piscataway, NI, 1999), Vol. 6, pp. 3429–3432.Google Scholar
  17. 17.
    M. Paci, L. Nanni, and S. Severi, “An ensemble of classifiers based on different texture descriptors for texture classification,” J. King Saud Univ.–Sci. 25 (3), 235–244 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Rohlfing and C. R. J. Maurer, “Multi-classifier framework for atlas-based image segmentation,” Pattern Recogn. Lett. 26 (13), 2070–2079 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Saad, T. Möller, and G. Hamarneh, “Probexplorer: uncertainty-guided exploration and editing of probabilistic medical image segmentation,” Comput. Graph. Forum 29 (3), 1113–1122 (2010).CrossRefGoogle Scholar
  20. 20.
    A. J. C. Sharkey, Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems (Springer-Verlag, New York, 1999).CrossRefzbMATHGoogle Scholar
  21. 21.
    L. Szilágyi, Z. Benyo, S. Szilágyi, and H. Adam, “MR brain image segmentation using an enhanced fuzzy cmeans algorithm,” in Proc. 25th IEEE Annu. Int. Conf. Engineering in Medicine and Biology Society (Cancun, 2003), Vol. 1, pp. 724–726.CrossRefGoogle Scholar
  22. 22.
    Y. Tolias and S. Panas, “On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system,” IEEE Signal Processing Lett. 5 (10), 245–247 (1998).CrossRefGoogle Scholar
  23. 23.
    W. Wang, Y. Zhu, X. Huang, D. P. Lopresti, Z. Xue, L. R. Long, S. Antani, and G. R. Thoma, “A classifier ensemble based on performance level estimation,” in Proc. IEEE ISBI (Boston, MA, 2009), pp. 342–345.Google Scholar
  24. 24.
    S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation,” IEEE Trans. Med. Imag. 23, 903–921 (2004).CrossRefGoogle Scholar
  25. 25.
    K. Yuan, L. Wu, Q. Cheng, S. Bao, C. Chen, and H. Zhang, “A novel fuzzy c-means algorithm and its application,” Int. J. Pattern Recogn. Artificial Intellig. 19 (8), 1059–1066 (2005).CrossRefGoogle Scholar
  26. 26.
    D. Zhang and S. Chen, “A novel kernelised fuzzy cmeans algorithm with application in medical image segmentation,” Artificial Intellig. Med. 32 (1), 37–50 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Jacobs UniversityBremenGermany
  2. 2.Fraunhofer MEVISBremenGermany
  3. 3.Westfälischen Wilhelms-UniversitätMünsterGermany

Personalised recommendations