Advertisement

Pattern Recognition and Image Analysis

, Volume 26, Issue 4, pp 817–823 | Cite as

Implementation of the zero-padding interpolation technique to improve angular resolution of X-ray tomographic acquisition system

  • M. Reda Ahmed Bacha
  • A. Oukebdane
  • A. Hafid Belbachir
Applied Problems

Abstract

This paper suggests the implementation of an algorithm that improves the X-ray tomographic reconstruction quality of a parallel acquisition geometry by adding virtual projections to the reconstruction process in order to increase the angular resolution of the measuring device, as in the case of CT scanners. The suggested method is based on an estimated calculation of virtual projections using the zero-padding properties. The obtained results show a significant reduction of the noise effect on the reconstructed image and a remarkable quality improvement despite the use of a rudimentary tomographic device.

Keywords

image reconstruction acquisition system zero-padding method angular resolution tomograph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bertram, J. Wiegert, D. Schafer, T. Aach, and G. Rose, “Directional view interpolation for compensation of sparse angular sampling in cone-beam CT,” IEEE Trans. Med. Imaging 28 (7), 1011–1022 (2009).CrossRefGoogle Scholar
  2. 2.
    Sang Don Kim and Seung Eun Lee, “Multi-energy X-ray imaging system using single photon counting,” IRECOS 8 (7), 1517–1521 (2013).Google Scholar
  3. 3.
    R. Gordon, “Reconstruction of surfaces from profils,” in Proc. 1st Int Conf. IEEE on Comput Vision (London, 1987), pp. 136–144.Google Scholar
  4. 4.
    P. J. La Rivière and X. Pan, “Mathematical equivalence of zero-padding and circular sampling thorem interpolation with implications for direct Fourier image reconstruction,” Proc. SPIE 3338, 1117–1126 (1998).CrossRefGoogle Scholar
  5. 5.
    M. Endo, S. Mori, T. Tsunoo, S. Kandatsu, S. Tanada, H. Aradate, Y. Saito, H. Miyazaki, K. Satoh, S. Matsusita, and M. Kusakabe, “Development and performance evaluation of the first model of 4D CT-scanner,” IEEE Trans. Nucl. Sci. 50 (5) (2003).Google Scholar
  6. 6.
    W. Wagner, “Rconstructions from restricted region scan data-new means to reduce the patient dose,” IEEE Trans. Nucl. Sci. 26 (2) (1979).Google Scholar
  7. 7.
    G. H. Weiss, A. J. Talbert, and R. A. Brooks, “The use of phantom views to reduce CT streaks due to insufficient angular sampling,” Phys. Med. Biol. 27 (9), 1151–1162 (1982).CrossRefGoogle Scholar
  8. 8.
    R. R. Galigekere, K. Wiesent, and D. W. Holdsworth, “Techniques to alleviate the effects of viewaliasing artifacts in computed tomography,” Med. Phys. 26 (6), 896–904 (1999).CrossRefGoogle Scholar
  9. 9.
    K. P. Prasad and P. Satyanarayana, “Fast interpolation algorithm using FFT,” Electron. Lett. 22, 185–187 (1986).CrossRefGoogle Scholar
  10. 10.
    T. J. Cavicchi, “DFT time-domain interpolation,” IEEE Proc.-F 139, 207–211 (1992).CrossRefGoogle Scholar
  11. 11.
    M. Li, H. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599–2609 (2002).CrossRefGoogle Scholar
  12. 12.
    A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).MATHGoogle Scholar
  13. 13.
    Y. Li, “Interpolation based reconstruction methods for tomographic imaging in 3D positron emission tomography,” Int. J. Appl. Math. Comput. Sci. 18 (1), 63–73 (2008).CrossRefGoogle Scholar
  14. 14.
    P. J. La Riviere and Xiaochuan Pan, “Comparison of angular interpolation approaches in few-view tomography using statistical hypothesis testing,” SPIE 3661, 398–407 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. Reda Ahmed Bacha
    • 1
  • A. Oukebdane
    • 1
  • A. Hafid Belbachir
    • 1
  1. 1.Department of Physics Engineering, Faculty of PhysicsUniversity of Sciences and Technology Mohamed Boudiaf of Oran USTO-MBOranAlgeria

Personalised recommendations