Pattern Recognition and Image Analysis

, Volume 26, Issue 4, pp 705–713 | Cite as

Quaternion angular radial transform and properties transformation for color-based object recognition

Representation, Processing, Analysis, and Understanding of Images


Nowadays, with the increased use of digital images, almost all of which are in color format. Conventional methods process color images by converting them into gray scale, which is definitely not effective in representing and which may lose some significant color information. Recently, a novel method of the Color Angular Radial Transform (CART) is presented. This transform combines the information by considering the shape information inherent in the color. However, ART is adapted on the MPEG-7 standard is only limited to binary images and gray-scale images has many properties: invariant to rotation, Translation and scaling, ability to describe complex objects, so it cannot handle color images directly. To solve this problem we proposed in this article to generalize ART from complex domain to hypercomplex domain using quaternion algebras to achieve the Quaternion Angular Radial Transform (QART) to describe finally two dimensional color images and to insure these properties robustness to all possible rotations and translation and scaling. The performance of QART is then evaluated with large database of color image as an example. We first provide a general formula of ART from which we derive a set of quaternion-valued QART properties transformations by eliminating the influence of transformation parameters. The experimental results show that the QART performs better than the commonly used Quaternion form Zernike Moment (QZM) in terms of image representation capability and numerical stability.


color image ART descriptor quaternion quaternion angular radial transform recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. O. Belkasim, M. Shridhar, and M. Ahmadi, “Pattern recognition with moment invariants: a comparative study and new results,” Pattern Recogn. 24, 1117–1138 (1991).CrossRefGoogle Scholar
  2. 2.
    S. O. Khotanzad and Y. H. Hong, “Invariant image recognition by Zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12 (5), 489–497 (1990).CrossRefGoogle Scholar
  3. 3.
    T. K. Tsui, X. P. Zhang, and D. Androutsos, “Color image watermarking using multidimensional Fourier transforms,” IEEE Trans. Inf. Forensics Security 3 (1), 16–28 (2008).CrossRefGoogle Scholar
  4. 4.
    Y. Xu, L. C. Yu, H. T Xu, H. Zhang, and T. Nguyen, “Vector sparse representation of color image using quaternion matrix analysis,” IEEE Trans. Image Processing 24 (4), 1315–1329 (2015).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Z. Wang and A. C. Bovik, “Modern image quality assessment,” Synth. Lectures Image, Video, Multimedia Process. 2 (1), 1–156 (2006).CrossRefGoogle Scholar
  6. 6.
    F. Ahmed, M. Siyal, and V. U. Abbas, “A secure and robust hash-based scheme for image authentication,” Signal Process. 90 (5), 1456–1470 (2010).CrossRefMATHGoogle Scholar
  7. 7.
    D. S. Alexiadis and G. D. Sergiadis, “Estimation of motions in color image sequences using hypercomplex Fourier transforms,” IEEE Trans. Image Process. 18 (1), 168–187 (2009).MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. N. Lang, J. L. Zhou, S. Cang, H. Yu, and Z. Shang, “A self-adaptive image normalization and quaternion PCA based color image watermarking algorithm,” Expert Syst. Appl. 39 (15), 12046–12060 (2012).CrossRefGoogle Scholar
  9. 9.
    B. J. Chen, G. Coatrieux, G. Chen, X. M. Sun, J. L. Coatrieux, and H. Z. Shu, “Full 4D quaternion discrete Fourier transform based watermarking for color images,” Digit. Signal Process. 28 (1), 106–119 (2014).CrossRefGoogle Scholar
  10. 10.
    Z. H. Shao, H. Z. Shu, J. S. Wu, B. J. Chen, and J. L. Coatrieux, “Quaternion Bessel-fourier moments and their invariant descriptors for object reconstruction and recognition,” Pattern Recogn. 47 (2), 603–611 (2014).CrossRefMATHGoogle Scholar
  11. 11.
    O. N. Subakan and B. C. Vemuri, “A quaternion framework for color image smoothing and segmentation,” Int. J. Comput. Vision 91 (3), 233–250 (2011).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    W. R. Hamilton, Elements of Quaternions (Longmans Green, London, 1866).Google Scholar
  13. 13.
    T. A. Ell, and S.J. Sangwine, “Hypercomplex Fourier transforms of color images,” IEEE Trans. Image Process. 16 (1), 22–35 (2007).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    S. J. Sangwine and T. A. Ell, “Hypercomplex Fourier transforms of colour images,” in Proc. IEEE Int. Conf. on Image Processing (ICIP 2001) (Thessaloniki, 2001), pp. 137–140.Google Scholar
  15. 15.
    N. Le Bihan and S.J. Sangwine, “Quaternion principal component analysis of colour images,” in Proc. IEEE Int. Conf. on Image Processing (ICIP) (Barcelona, 2003), pp. 809–812.Google Scholar
  16. 16.
    S. Sangwine and T. A. Ell, “The discrete Fourier transform of a colour image,” in Image Processing II: Mathematical Methods, Algorithms and Applications, Ed. by J. M. Blackledge and M. J. Turner (Horwood Publ., 2000), pp. 430–441.Google Scholar
  17. 17.
    T. A. Ell, “Hypercomplex spectral transforms,” Ph.D. Dissertation (Univ. Minnesota, Minneapolis, 1992).Google Scholar
  18. 18.
    C. E. Moxey, S. J. Sangwine, and T. A. Ell, “Colorgrayscale image registration using hypercomplex phase correlation,” in Proc. IEEE Int. Conf. on Image Processing (ICIP) (Rochester, 2002), pp. 385–388.Google Scholar
  19. 19.
    W. L. Chan, H. Choi, and R. G. Baraniuk, “Coherent multiscale image processing using dual-tree quaternion wavelets,” IEEE Trans. Image Process. 17 (7), 1069–1082 (2008).MathSciNetCrossRefGoogle Scholar
  20. 20.
    W. L. Chan, H. Choi, and G. Baraniuk, “Directional hypercomplex wavelets for multidimensional signal analysis and processing,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2004) (Montreal, 2004), pp. 996–999.Google Scholar
  21. 21.
    T. Batard, M. Berthier, and C. Saint-Jean, “Clifford- Fourier transform for color image processing,” in Geometric Algebra Computing (Springer, London, 2010), pp. 135–162.CrossRefGoogle Scholar
  22. 22.
    Y. N. Li, “Quaternion polar harmonic transforms for color images,” IEEE Signal Process. Lett. 20 (8), 803–806 (2013).CrossRefGoogle Scholar
  23. 23.
    S. Li, M. C. Lee, and C. M. Pun, “Complex Zernike moment features for shape-based image retrieval,” IEEE Trans. Syst. Man Cyb. A 39 (1), 227–237 (2009).CrossRefGoogle Scholar
  24. 24.
    A. Kolaman and O. Yadid-Pecht, “Quaternion structural similarity: a new quality index for color images,” IEEE Trans. Image Processing 21 (4), 1526–1536 (2012).MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Bober, “MPEG-7 visual shape descriptors,” IEEE Trans. Circuits Syst. Video Technol. 11, 716–719 (2001).CrossRefGoogle Scholar
  26. 26.
    S. J. Sangwine, “Fourier transforms of colour images using quaternion or hypercomplex, numbers,” Electron. Lett. 32 (21), 1979–1980 (1996).CrossRefGoogle Scholar
  27. 27.
    T. A. Ell, Hypercomplex Spectral Transformations (Univ. of Minnesota, 1992).Google Scholar
  28. 28.
    W. R. Hamilton, Elements of Quaternions (Longmans, Green & Company, 1866).Google Scholar
  29. 29.
    The Moving Picture Experts Group (MPEG). Cited Jan. 12, 2009.Google Scholar
  30. 30.
    A. Amanatiadis, V. G. Kaburlasos, A. Gasteratos, and S. E. Papadakis, “Evaluation of shape descriptors for shape-based image retrieval,” Image Processing 5, 493–499 (2011).CrossRefGoogle Scholar
  31. 31.
    C. S. Pooja, “An effective image retrieval system using region and contour based features,” in Proc. IJCA Int. Conf. on Recent Advances and Future Trends in Information Technology (Patiala, 2012), pp. 7–12.Google Scholar
  32. 32.
    K. M. Hosny, “Exact and fast computation of geometric moments for gray level images,” Appl. Math. Comput. 189, 1214–1222 (2007)MathSciNetMATHGoogle Scholar
  33. 32a.
    S. Liao, M. W. Law, and A. Chung, “Dominant local binary patterns for texture classification,” IEEE Trans. Image Processing 18 (5), 1107–1118 (2009).MathSciNetCrossRefGoogle Scholar
  34. 33.
    C. Y. Wee and R. Paramesran, “On the computational aspects of Zernike moments,” Image Vision Comput. 25, 967–980 (2007).CrossRefGoogle Scholar
  35. 34.
    C. Singh and R. Upneja, “Error analysis in the computation of orthogonal rotation invariant moments,” J. Math. Imaging Vision 49, 251–271 (2014).CrossRefMATHGoogle Scholar
  36. 35.
    A. Khatabi, A. Tmiri, and A. Serhir, “A novel approach for computing the coefficient of ART descriptor using polar coordinates for gray-level and binary images,” in Advances in Ubiquitous Networking (Springer, 2016), pp. 391–401.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Dept. of Computer ScienceChouaib Doukkali University El JadidaJadidaMorocco
  2. 2.Dept. of MathChouaib Doukkali University El JadidaJadidaMorocco

Personalised recommendations