Skip to main content
Log in

Virtual reality representation of Martian soil for space exploration

  • Applied Problems
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

Space exploration is a very challenging task for various reasons, such as hostile environments, different gravity laws, either unknown or unpredictable phenomena which need ad hoc technological solutions to be devised first and then put in practice. In this context, virtual reality techniques can help the aerospace industry to improve the planning phase of each mission; its main advantages are to allow realistic digital mock-ups representation, to enable collaborative multidisciplinary engineering tasks, simulation of critical ground and flight operations, real-time interactivity, costs reduction and time sparing. Since a deep knowledge of the working environment can surely be considered a crucial factor in designing space exploration missions, such as in the case of scientific exploration of solar planets, virtual reality representation is a fundamental method in order to recreate and exploit useful information about the terrains where robots, machinery and astronauts have to work onto. Therefore, in this paper we will describe how the Martian surface is represented and visualized for practical, virtual reality applications, developed at COSE Center in Thales Alenia Space—Italy. In particular, our interest is focused on passing from highly defined digital elevation maps to suitable 3D models. Examples of such reconstructions will be given as well as some concrete scenarios brought up for detailed discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Albertz, S. Gehrke, M. Wählisch, H. Lehmann, and T. Schumacher, “Digital Cartography with HRSC on Mars Express”, Int. Arch. Photogrammetry Remote Sensing 35, Part B4 (Istanbul, 2004).

  2. V. Basso, M. Pasquinelli, L. Rocci, C. Bar, and M. Marello, “Collaborative System Engineering Usage at Thales Alenia Space Italia”, in Proc. Conf. System and Concurrent Engineering for Space Applications SEC-ESA 2010 (Lausanne (CH), Oct. 2010).

    Google Scholar 

  3. B. Beeson, M. Lancaster, D. Barnes, P. Bourke, and G. Rixon, “Visualising Astronomical Data Using VRML”, Proc. SPIE Digital Library 5493, 242–253 (International Society for Optical Engineering, March 2004).

    Google Scholar 

  4. J. Bell, Mars 3-D: a Rover’s-Eye View of the Red Planet (Sterling, 2009).

    Google Scholar 

  5. J. Bell, Moon 3-D (Sterling, 2009).

    Google Scholar 

  6. L. Carlone, R. Micalizio, G. Nuzzolo, E. Scala and D. Tedone, “STEPS: Predictive and Command System (PCS) Results on 1st Working Prototype”, in Proc. 40th Int. Conf. on Environmental Systems (Barcelona, July 11–15, 2010).

    Google Scholar 

  7. E. Eliason, B. Castalia, S. Mattson, R. Heyd, K. Becker, J. Anderson, and S. Sides, “Software Interface Specification for HiRISE Reduced Data Record Products”, Mars Reconnaissance Orbiter JPL Document No. D-32006, Version1.2, (Nov. 2009).

    Google Scholar 

  8. A. Forsberg, Prabhat, G. Haley, A. Bragdon, J. Levy, C. I. Fassett, D. Shean, J. W. Head, S. Milkovich, and M. A. Duchaineau, “ADVISER: Immersive Field Work for Planetary Geoscientists”, IEEE Comput. Graphics Appl. 26(4), 46–54 (July–August 2006).

    Article  Google Scholar 

  9. A. Forsberg, G. Morgan, N. Petro, J. Levy, and J. Head, “Virtual Field Trip to Mars: Experiences with a Virtual Reality Lab for Undergraduate Student”, in Proc. 37th Lunar and Planetary Science Conf. (LPSC 06) (League City, TX, March 2006), pp. 1319–1320.

    Google Scholar 

  10. M. A. Goodrich and A.C. Schultz, “Human-Robot Interaction: A Survey”, Foundations Trends Human-Computer Interact. 1(3), 203–275 (2007).

    Article  MATH  Google Scholar 

  11. E. N. Harris and G. W. Morgenthaler, “Planning, Implementation and Optimization of Future Space Missions Using an Immersive Visualization Environment (IVE) Machine”, in Proc. 53rd Int. Astronautical Congr. of the International Astronautical Federation (IAF) (Houston, TX, Oct. 10–19, 2002).

    Google Scholar 

  12. J. Head, A. van Dam, S. Fulcomer, A. Forsberg, and G. R. Milkovich and S., “ADVISER: Immersive Scientific Visualization Applied to Mars Research and Exploration”, Photogrammetric Eng. Remote Sensing 71(10), 1219–1226 (Oct. 2005).

    Article  Google Scholar 

  13. M. Heim, The Metaphysics of Virtual Reality (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  14. T.L. Huntsberger, G. Rodriguez, and P. S. Schenker, “Robotics Challenges for Robotic and Human Mars Exploration”, in Proc. Conf. on Robotics (Albuquerque, NM, 2000).

    Google Scholar 

  15. R. Jaumann, G. Neukum, T. Behnke, T. C. Duxbury, K. Eichentopf, J. Flohrer, S. V. Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, A. Hoffmeister, U. Köhler, K.D. Matz, T. B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch, and the HRSC Co-Investigator Team, “The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise Through the Nominal Mission”, Planetary Space Sci. 55(7–8), 928–952 (2007).

    Article  Google Scholar 

  16. R. L. Kirk, L. A. Soderblom, E. Howington-Kraus, and B. Archinal, “USGS High-Resolution Topomapping of Mars with Mars Orbiter Camera Narrow-Angle Images”, in Proc. 4th ISPRS Commission Symp. (Ottawa, 2002).

    Google Scholar 

  17. G. A. Landis, “Robots and Humans: Synergy in Planetary Exploration”, Acta Astronaut. 55, No. 12, pp. 985–990

  18. Z. Li, Q. Zhu, and C. Gold, Digital Terrain Modeling: Principles and Methodology (CRC Press, 2005).

    Google Scholar 

  19. A. C. Loomis, J. N. Huffman, J. W. Head, C. I. Fassett, J. L. Dickson, and A. S. Forsberg, “Visualization of Planetary Data with ADVISER: Applications to the Moon and Beyond”, in Proc. 41st Lunar and Planetary Sci. Conf. (The Woodlands, TX, 2011), p. 2090.

    Google Scholar 

  20. T. B. McCord, J. B. Adams, G. Bellucci, J. P. Combe, A. R. Gillespie, G. Hansen, H. Hoffmann, R. Jau- mann, G. Neukum, P. Pinet, F. Poulet, and K. Stephan, “Mars Express High Resolution Stereo Camera Spectrophotometric Data: Characteristics and Science Analysis”, J. Geophys. Res. 112, E06004 (2007).

    Google Scholar 

  21. A. S. McEwen, E. M. Eliason, J. W. Bergstrom, N. T. Bridges, C. J. Hansen, W. A. Delamere, J. A. Grant, V. C. Gulick, K. E. Herkenhoff, L. Keszthelyi, R. L. Kirk, M. T. Mellon, S. W. Squyres, N. Thomas, and C. M. Weitz, “Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE)”, J. Geophys. Res. 112, E05S02 (2007).

    Google Scholar 

  22. A. S. McEwen, W. A. Delamere, E. M. Eliason, J. A. Grant, V. C. Gulick, C. J. Hansen, K. E. Herkenhoff, L. Keszthelyi, R. L. Kirk, M. T. Mellon, S. W. Squyres, N. Thomas, and C. Weitz, “HiRISE: The High Resolution Imaging Science Experiment for Mars Reconnaissance Orbiter”, in Proc. 33rd Annu. Lunar and Planetary Sci. Conf. (Houston, March 11–15, 2002).

    Google Scholar 

  23. G. Neukum, and R. Jaumann, “HRSC: the High Resolution Stereo Camera of Mars Express”, in Mars Express: the Scientific Payload, Ed. by A. Wilson (ESA Publ., Noordwijk, 2004), pp. 17–35.

    Google Scholar 

  24. G. A. Neumann, D. D. Rowlands, F. G. Lemoine, D. E. Smith, and M. T. Zuber, “Crossover Analysis of Mars Orbiter Laser Altimeter Data”, J. Geophys. Res. 106(10), 23,753–23,768 (2001).

    Article  Google Scholar 

  25. R. Olanda, M. Pérez, P. Morillo, M. Fernández, and S. Casas, “Entertainment Virtual Reality System for Simulation of Spaceflights over the Surface of the Planet Mars”, in Proc. ACM Symp. on Virtual Reality Software and Technology (VRST 06) (ACM, New York, 2006), pp. 123–132.

    Chapter  Google Scholar 

  26. J. Rönkk-, J. Markkanen, R. Launonen, M. Ferrino, E. Gaia, V. Basso, H. Patel, M. D’Cruz and S. Laukkanen, “Multimodal Astronaut Virtual Training Prototype,” Int. J. Human-Comput. Studies — Interaction Virtual Environ. 64(3), 182–191 (2006).

    Article  Google Scholar 

  27. P. S. Schenker, T. L. Huntsberger, P. Pirjanian, E. T. Baumgartner, and E. Tunstel, “Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic Colonization”, Autonom. Robots 14(2–3), 103–126 (2003).

    Article  MATH  Google Scholar 

  28. P. K. Seidelmann, V. K. Abalakin, M. Bursa, M. E. Davies, C. de Bergh, J. H. Lieske, J. Oberst, J. L. Simon, E. M. Standish, P. Stooke, and P. C. Thomas, “Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets, and Satellites: 2000”, Celest. Mech. Dynam. Astron. 82, 83–110 (2002).

    Article  Google Scholar 

  29. P. K. Seidelmann, B. A. Archinal, M. F. A’Hearn, D. P. Cruikshank, J. L. Hilton, H. U. Keller, J. Oberst, J. L. Simon, P. Stooke, D. J. Tholen, P. C. Thomas, ”Report of the IAU/IAGWorking Group on Cartographic Coordinates and Rotational Elements: 2003”, Celest. Mech. Dynam. Astron. 91, 203–215 (2005).

    Article  Google Scholar 

  30. P. K. Seidelmann, B. A. Archinal, M. F. A’Hearn, A. Conrad, G. J. Consolmagno, D. Hestroffer, J. L. Hilton, G. A. Krasinsky, G. Neumann, J. Oberts, P. Stooke, E. F. Tedesco, D. J. Tholen, P. C. Thomas, and I. P. Williams, “Report of the IAU / IAG Working Group on Cartographic Coordinates and Rotational Elements: 2006”, Celest. Mech. Dynam. Astron. 98, 155–180 (2007).

    Article  MATH  Google Scholar 

  31. D. E. Smith, M. T. Zuber, S. C. Solomon, R. J. Phillips, J. W. Head, J. B. Garvin, W. B. Banerdt, D. O. Muhleman, G. H. Pettengill, G. A. Neumann, F. G. Lemoine, J. B. Abshire, O. Aharonson, C. D. Brown, S. A. Hauck, A. B. Ivanov, P. J. McGovern, H.J. Zwally, and T. C. Duxbury, “The Global Topography of Mars and Implications for Surface Evolution”, Science, 284, 1495–1503 (1999).

    Article  Google Scholar 

  32. D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, T. C. Duxbury, M. P. Golombek, F.G. Lemoine, G. A. Neumann, D. D. Rowlands, O. Aharonson, P. G. Ford, A. B. Ivanov, C. L. Johnson, P. J. McGovern, J. B. Abshire, R. S. Afzal, and X. Sun, “Mars Orbiter Laser Altimeter: Experiment Summary after the First Year of Global Mapping of Mars”, J. Geophys. Res., 106(E10), 23689–23722 (2001).

    Article  Google Scholar 

  33. S. M. Som, H. M. Greenberg, and D. R. Montgomery, “The Mars Orbiter Laser Altimeter Dataset: Limitations and Improvements”, Int. J. Mars Sci. Exploration 4, 14–26 (2008).

    Google Scholar 

  34. C. R. Stoker, “Scientists on Mars: Science Strategy for Human Exploration,” in Strategies for Mars: A Guide to Human Exploration, Ed. by C. Stoker and C. Emmart (AAS Science and Technology Series, 1996), Vol. 86, pp. 537–560.

    Google Scholar 

  35. C. R. Stoker, T. Blackmon, J. Hagen, B. Kanefsky, D. Rasmussen, K. Schwehr, M. Sims, and E. Zbinden, “Marsmap: An Interactive Virtual Reality Model of the Pathfinder Landing Site”, in Proce. Lunar and Planetary Sci, Conf. (LPSC’98) (Lunar and Planetary Institute, Houston, March 1998).

    Google Scholar 

  36. C. R. Stoker, E. Zbinden, T. Blackmon, and L. Nguyen, “Visualizing Mars Using Virtual Reality: A State of the Art Mapping Technique Used on Mars Pathfinder”, in Proc. 5th Int. Conf. of Mars, Lunar and Planetary Institute (Pasadena, March 1999).

    Google Scholar 

  37. C. R. Stoker, E. Zbinden, T. Blackmon, B. Kanefsky, et al., “Analyzing Pathfinder Data Using Virtual Reality and Super-Resolved Imaging”, J. Geophys. Res. — Planets 104(E4), 8889–8906 (1999).

    Article  Google Scholar 

  38. D. Tedone, S. Ferraris, E. Appella, C. Bar, M. Marello, B. Bona, A. Giordana, and P. Torasso, “STEPS: HMI Results on 1st Working Prototype”, in Proc. 40th Int. Conf. on Environmental Systems (Barcelona, July 11–15, 2010).

    Google Scholar 

  39. Standards for Digital Elevation Models (National Mapping Division, U.S. Geological Survey, U.S. Department of the Interior).

  40. S. Walker and J. Kenneth, “Large Haptic Topographic Maps: MarsView and the Proxy Graph Algorithm”, in Proc. Symp. on Interactive 3D Graphics ACM SIG-GRAPH 2003 (ACM Press, San Diego, April 2003), pp. 83–92.

    Google Scholar 

  41. S. Wang, M. Damon, and D. Yuen, “Visualization in the Earth Sciences: A Discussion on Various Visualization Methods Using Amira”, in Proc. 16th IEEE Visualization Conf. (VIS 2005) (IEEE Society Press, Minneapolis, October 2005), p. 112.

    Google Scholar 

  42. Terrain Analysis: Principles and Applications, Ed. by J. P. Wilson and J. C. Gallant (Wiley, New York, 2000).

    Google Scholar 

  43. P. Withers, and G. A. Neumann, “Enigmatic Ridges on the Plains of Mars”, Nature 410, 652 (2001).

    Article  Google Scholar 

  44. J. Wright, F. Hartman, and B. Cooper, “Immersive Environments for Mission Operations: Beyond Mars Pathfinder”, in Proc. Space Operations (Tokyo, 1998).

    Google Scholar 

  45. J. Wright, F. Hartman, and B. Cooper, “Immersive Environment Technologies for Planetary Exploration with Applications for Mixed Reality”, in Proc. Int. Conf. on Entertainment Computing Special Session on Mixed Reality (Makuhari, 14 May 2002).

    Google Scholar 

  46. J. Wright, A. Trebi-Ollennu, F. Hartman, B. Cooper, S. Maxwell, J. Yen, and J. Morrison, “Terrain Modelling for in situ Activity Planning and Rehearsal for the Mars Exploration Rovers”, in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics (Waikoloa, HI, October 12, 2005), pp. 1372–1377.

    Google Scholar 

  47. J. Wright, F. Hartman, B. Cooper, S. Maxwell, J. Yen, and J. Morrison, “Driving on Mars with RSVP”, IEEE Robot. Automat. Mag. 13(2), 37–45 (June 2006).

    Article  Google Scholar 

  48. J. Wright, “Three-Dimensional Tools for Telemetry Visualization and Analysis”, in Proc. IEEE Aerospace Conf. (Big Sky, MT, 7–14 March 2009), pp. 1–7.

    Google Scholar 

  49. M. T. Zuber, S. C. Solomon, R. J. Phillips, D. E. Smith, G. L. Tyler, O. Aharonson, G. Balmino, W. B. Banerdt, J. W. Head, C. L. Johnson, F. G. Lemoine, P. J. McGovern, G. A. Neumann, D. D. Rowlands, and S. Zhong, “Internal Structure and Early Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity”, Science 287, 1788–1793 (2000).

    Article  Google Scholar 

  50. Celestia Home Page. http://shatters.net/celestia/

  51. Google Earth Home Page. http://www.google.com/earth/

  52. Google Mars Home Page. http://www.google.com/mars/

  53. HiRISE Home Page. http://hirise.lpl.arizona.edu/

  54. HiRISE Nasa Home Page. http://marsoweb.nas.nasa.gov/HiRISE/

  55. HiRISE DEM Home Page. http://webgis.wr.usgs.gov/pigwad/down/mars-hirise.htm

  56. HiWeb Home Page:. http://marsoweb.nas.nas.gov

  57. HRSC Data. http://sci.esa.int/science-e/www/area/index.cfm?fareaid=9

  58. HRSC Viewer. http://hrscview.fu-berlin.de/

  59. Mars Express Orbiter. http://www.esa.int/export/SPE-CIALS/Mars-Express/index.html

  60. Mars Reconnaissance Orbiter Home Page:. http://marsprogram.jpl.nasa.gov/mro/

  61. MEGDR-64 Repository. http://pds-geosciences.wustl.edu/geodata/mgs-m-mola-5-megdrl3-v1/mgsl-300x/meg064/

  62. MEGDR-128 Repository. http://pds-geosciences.wustl.edu/geodata/mgs-m-mola-5-megdrl3-v1/mgsl-300x/meg128/

  63. Mola Home Page. http://mola.gsfc.nasa.gov/

  64. Nasa World Wind Java SDK Home Page. http://worldwind.arc.nasa.gov/java/demos/

  65. NASA DTM Repository. http://pdsimg.jpl.nasa.gov/data/vo1-vo2-m-vis-5-dtm-v1.0/vo-2007/

  66. Planetary Laser Altimetry. http://tharsis.gsfc.nasa.gov/

  67. SDTS Home Page. http://mcmcweb.er.usgs.gov/sdts/

  68. Terrain Analysis Home Page. http://www.geo.hunter.cuny.edu/terrain/

  69. Virtual Terrain Project. http://www.vterrain.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Piovano.

Additional information

The article is published in the original.

Luca Piovano graduated in Computer Science at Torino University, Italy, in 2004. He took his Ph.D. in Computer Science at Torino University in 2008, in joint program with the Institute for Electronics and Information and Telecommunications Engineering (IEIIT) at National Council of Research (CNR). Since 2008, he has collaborated with Thales Alenia Space—Italy, first as Lagrange fellowship holder (in joint research with Physical Space Inter-University Consortium) and currently as research fellow (in collaboration with Computer Science Department of Torino University). His research interests mainly fall into the computer vision field with practical applications for virtual reality and 3D representation of spatial environments.

Michela Marcella Brunello graduated in Mathematics at Torino University, Italy, in 2010 with a thesis on elaborating digital elevation models for their accurate representation on virtual reality environments. She is actually holding a scholarship for the STEPS project from Computer Science department of Torino University, and she is collaborating with Thales Alenia Space—Italy. Her interests are related to computational mathematics in virtual space exploration domain, with a particular emphasis on terrain representation and procedural methods.

Ivano Musso took his Master in Eurospace Engineering at Politecnico of Torino in 2000. He graduated in Physics at Pisa Universita in 2005 and took his PhD in Space Science and Engineering at CISAS c/o Padova University in 2008. From 2000 to 2008 he was at Flight Dynamics Laboratory of the ISTI Information Science Institute of the National Research Council of Italy in Pisa, first as fellowship holder and then as a member of the research staff. In that period, he performed studies on stratospheric balloons trajectory prediction and operations for the Italian Space Agency, plasma propulsion studies with CISAS and mission analysis also with German Space Operations Centre in Munich. In ALTEC from mid 2008, he is now responsible of the Operations Group. In this context, he has been involved into several research projects (STEPS, IXV in collaboration with ESA, ExoMars-ROCC project).

Lorenzo Rocci graduated in Aerospace Engineering at Politecnico of Torino in 1999. The subject of his thesis was on parametric and variation monetization. He is in Thales Alenia Space Italia since 2001, working on mechanical analysis, where he joined Business Segment Space Infrastructure and Transportation Engineering and Advanced Programs department. He is currently the technical platform responsible of the COllaborative System Engineering (COSE) Centre.

Valter Basso graduated in Computer Science at Torino University. Since 1989 he is in Thales Alenia Space Italia working on Requirements Verification on Assembly Integration and Verification (AIV department). He joined the Business Segment Space Infrastructure and Transportation Engineering and Advanced Programs department as Manager for Process Optimisation driven by Concurrent Engineering since 2005. He participated to many Space Agencies, European Commission and Regional Project/Studies often with Managerial role (e.g., ESA/MATED; EC/VIEW of the Future; Region Piedmont and CIFS/AstroVR, EC/MANUVAR; Region Piedmont/STEPS). He is currently the responsible of the COllaborative System Engineering (COSE) Centre. He is also member of the Finmeccanica Mindsh@re community.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piovano, L., Brunello, M.M., Musso, I. et al. Virtual reality representation of Martian soil for space exploration. Pattern Recognit. Image Anal. 23, 111–129 (2013). https://doi.org/10.1134/S1054661812040141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661812040141

Keywords

Navigation