Skip to main content
Log in

A new approach for describing amplified spontaneous emission in a KrF excimer laser using z-dependency of gain-coefficient

  • Physics of Lasers
  • Published:
Laser Physics

Abstract

Based on our recent realization concerning the geometrically dependent gain coefficient in self-terminating gas lasers, where it is shown that in one-dimensional approach it is z-dependent, we applied the gain formulation to explain, both numerically and analytically, the behavior of the amplified spontaneous emission (ASE) output energy vs. excitation length of the active medium. As an example, we used experimental measurements reported for a KrF excimer laser. In the approach it was realized that it is needed to present a gain-profile slightly lower than the gain-profile deduced from different reports appeared in the literature, where it is also indicating that the contribution of the ASE on the laser output is significant and it is the active medium length dependent. The present analytical presentation of the ASE output energy behavior, also, introduces a generalized formulation compared to that appeared in the literature. With this approach it is possible to remove most of the present ambiguities existing on understanding of the ASE behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010).

  2. A. E. Siegman, Lasers (University Science Books, Mill Valley, California, 1986).

    Google Scholar 

  3. D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).

    Article  ADS  Google Scholar 

  4. L. Allen, and G. I. Peters, Phys. Lett. A 31, 95 (1970).

    Article  ADS  Google Scholar 

  5. G. I. Peters, and L. Allen, J. Phys. A: Gen. Phys. 4, 238 (1971).

    Article  ADS  Google Scholar 

  6. L. Allen, and G. I. Peters, J. Phys. A: Gen. Phys. 4, 377 (1971).

    Article  ADS  Google Scholar 

  7. L. Allen, and G. I. Peters, J. Phys. A: Gen. Phys. 4, 564 (1971).

    Article  ADS  Google Scholar 

  8. S. Stenholm and W. E. Lamb Jr., Phys. Rev. 181, 181 (1969).

    Article  Google Scholar 

  9. A. M. Hunter II and R. O. Hunter, Jr. IEEE J. Quantum Electron. QE-17, 1879 (1981).

    Article  ADS  Google Scholar 

  10. D. D. Lowenthal and J. M. Eggleston, IEEE J. Quantum Electron. QE-22, 1165 (1986).

    Article  ADS  Google Scholar 

  11. R. H. Lehmberg and J. L. Giuliani, J. Appl. Phys. 94, 31 (2003).

    Article  ADS  Google Scholar 

  12. G. Haag, M. Munz, and G. Marowsky, IEEE J. Quantum Electron. QE-19, 1149 (1983).

    Article  ADS  Google Scholar 

  13. Y. W. Lee and A. Endoh, Appl. Phys. B 52, 245 (1991).

    Article  ADS  Google Scholar 

  14. C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, IEEE J. Quantum. Electron. 42, 1239 (2006).

    Article  ADS  Google Scholar 

  15. N. P. Barnes and B. M. Walsh, IEEE J. Quantum. Electron. 35, 101 (1999).

    Article  ADS  Google Scholar 

  16. E. C. Harvey, C. J. Hooker, M. H. Key, A. K. Kidd, J. M. D. Lister, M. J. Shaw, and W. T. Leland, J. Appl. Phys. 70, 5238 (1991).

    Article  ADS  Google Scholar 

  17. I. Okuda and M. J. Shaw, Appl. Phys. B 54, 506 (1992).

    Article  ADS  Google Scholar 

  18. A. Sasaki, K. I. Ueda, H. Takuma, and K. Kasuya, J. Appl. Phys. 65, 231 (1989).

    Article  ADS  Google Scholar 

  19. X. Chen, W. Liu, and Z. Jiang, Chinese Opt. Lett. 8, 764 (2010).

    Article  Google Scholar 

  20. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Diaz-Garcia, and A. J. Heeger, Phys. Rev. B 58, 7035 (1998).

    Article  ADS  Google Scholar 

  21. W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, Appl. Phys. Lett. 90, 141110 (2007).

    Article  ADS  Google Scholar 

  22. F. Lahoz, C. J. Oton, N. Capuj, M. Ferrer-González, S. Cheylan, and D. Navarro-Urrios, Opt. Express 17, 16766 (2009).

    Article  ADS  Google Scholar 

  23. G. Kühnle, U. Teubner, and S. Szatmari, Appl. Phys. B 51, 71 (1990).

    Article  ADS  Google Scholar 

  24. A. Hariri, M. Jaberi, and S. Ghoreyshi, Opt. Commun. 281, 3841 (2008).

    Article  ADS  Google Scholar 

  25. S. Sarikhani and A. Hariri, Opt. Commun. 283, 118 (2010).

    Article  ADS  Google Scholar 

  26. A. Hariri and S. Sarikhani, Opt. Commun. 284, 2153 (2011).

    Article  ADS  Google Scholar 

  27. U. Ganiel, A. Hardy, G. Neumann, and D. Treves, IEEE J. Quantum Electron. QE-11, 881 (1975).

    Article  ADS  Google Scholar 

  28. G. Marowsky, F. K. Tittel, W. L. Wilson, and E. Frenkel, Appl. Opt. 19, 138 (1980).

    Article  ADS  Google Scholar 

  29. R. G. Adams and M. M. Dillon, J. Appl. Phys. 70, 4073 (1991).

    Article  ADS  Google Scholar 

  30. J. K. Rice, G. C. Tisone, and E. L. Patterson, IEEE J. Quantum Electron. QE-16, (1980) 1315.

    Article  ADS  Google Scholar 

  31. G. J. Hirst and M. J. Shaw, Appl. Phys. B 52, 331 (1991).

    Article  ADS  Google Scholar 

  32. M. Kakehata, C.-H. Yang, Y. Ueno, and F. Kannari, Appl. Phys. Lett. 61, 3089 (1992).

    Article  ADS  Google Scholar 

  33. J. Banic, T. Efthimiopoulos, and B. P. Stoicheff, Appl. Phys. Lett. 37, 686 (1980).

    Article  ADS  Google Scholar 

  34. L. C. Casper, H. M. J. Bastiaens, P. J. M. Peters, K.-J. Boller, and R. M. Hofstra, J. Appl. Phys. 102, 053110 (2007).

    Article  ADS  Google Scholar 

  35. K. Nakamura, S. Horiguchi, T. Nakaya, E. Fiziwara, T. Jitsuno, and Y. Kato, Opt. Commun. 59, 59 (1986).

    Article  ADS  Google Scholar 

  36. S. Watanabe, S. Shiratori, T. Sato, and H. Kashiwagi, Appl. Phys. Lett. 33, 141 (1978).

    Article  ADS  Google Scholar 

  37. M. C. Gower and C. B. Edwards, Opt. Commun. 40, 369 (1982).

    Article  ADS  Google Scholar 

  38. S. Watanabe, T. Sato, and H. Kashiwagi, Opt. Commun. 22, 143 (1977).

    Article  ADS  Google Scholar 

  39. S. Watanabe, A. Obara, T. Sato, H. Kashiwagi, and A. Endoh, Appl. Phys. Lett. 35, 365 (1979).

    Article  ADS  Google Scholar 

  40. V. Hasson, C. M. Lee, R. Exberger, K. W. Billman, and P. D. Rowley, Appl. Phys. Lett. 31, 167 (1977).

    Article  ADS  Google Scholar 

  41. A. C. Cefalas, C. Skordoulis, M. Kompitsas, and C. A. Nicolaides, Opt. Commun. 55, 423 (1985).

    Article  ADS  Google Scholar 

  42. E. Armandillo, A. Luches, V. Nassisi, and M. R. Perrone, Opt. Commun. 51, 319 (1984).

    Article  ADS  Google Scholar 

  43. E. Armandillo, A. Luches, V. Nassisi, and M. R. Perrone, Appl. Opt. 24, 18 (1985).

    Article  ADS  Google Scholar 

  44. R. Sadighi-Bonabi, F. W. Lee, and C. B. Collins, J. Appl. Phys. 53, 8508 (1982).

    Article  ADS  Google Scholar 

  45. A. Saliminia, P. Parvin, A. Zare, and R. Sadighi, Opt. Laser Tech. 28, 207 (1996).

    Article  ADS  Google Scholar 

  46. J. E. Andrew and P. E. Dyer, Opt. Commun. 54, 117 (1985).

    Article  ADS  Google Scholar 

  47. W. E. Ernst and F. K. Tittel, IEEE J. Quantum Electron. QE-16, 945 (1980).

    Article  ADS  Google Scholar 

  48. A. M. Hawryluk, J. A. Mangano, and J. H. Jacob, Appl. Phys. Lett. 31, 164 (1977).

    Article  ADS  Google Scholar 

  49. S. Watanabe, T. Sato, and H. Kashiwagi, IEEE J. Quantum Electron. QE-15, 322 (1979).

    Article  ADS  Google Scholar 

  50. C. B. Edwards, F. O’Neill, and M. J. Shaw, Appl. Phys. Lett. 38, 843 (1981).

    Article  ADS  Google Scholar 

  51. M. H. R. Hutchinson, “Excimer Lasers,” Topics in Applied Physics, Vol. 59: Tunable lasers, Eds by L. F. Mollenauer and J. C. White (Springer-Verlag, Berlin, Heidelberg, New York, 1987).

    Google Scholar 

  52. P. H. Bucksbaum, J. Boker, R. H. Storz, and J. C. White, Opt. Lett. 7, 399 (1982).

    Article  ADS  Google Scholar 

  53. L. M. Frantz and J. S. Nodvik, J. Appl. Phys., 34, 2346 (1963).

    Article  ADS  Google Scholar 

  54. S. Watanabe, A. J. Alcock, K. E. Leopold, and P. S. Taylor, Appl. Phys. Lett. 38, 3 (1981).

    Article  ADS  Google Scholar 

  55. I. Okuda, T. Tomie, and Y. Owadano, Appl. Phys. B: Lasers and Optics 67, 529 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariri, A., Sarikhani, S. A new approach for describing amplified spontaneous emission in a KrF excimer laser using z-dependency of gain-coefficient. Laser Phys. 22, 1861–1873 (2012). https://doi.org/10.1134/S1054660X12120109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12120109

Keywords

Navigation