Skip to main content
Log in

Difference in Bose-Einstein condensation of conserved and unconserved particles

  • Reviews
  • Published:
Laser Physics

Abstract

The peculiarities in the Bose-Einstein condensation of particles and quasiparticles are discussed. The difference between the condensation of conserved and unconserved particles is analyzed. A classification of quasiparticles is given. The emphasis is made on the ability of particles and quasiparticles to condense. Illustrations include: general Bose-condensed atomic systems, such as ensembles of trapped atoms, Bose gases with conserved and unconserved number of atoms, vibrating atoms in double-well lattices, Holstein-Primakoff magnons, Schwinger bosons, slave bosons, and the condensation of singletons and triplons. The basic difference is that the system of particles, whose total number is conserved, can form equilibrium as well as nonequilibrium condensates, while unconserved particles can condense only in a nonequilibrium system subject to external pumping supporting the density of these particles sufficient for their condensation. The examples of such a nonequilibrium condensation of unconserved particles are the Bose-Einstein condensation of excitons, polaritons, and photons. Elementary collective excitations, such as bogolons and phonons, being self-consistently defined, do not condense. Magnons cannot condense in equilibrium systems. Controversies, existing in literature with regard to the Bose-Einstein condensation of some quasiparticles, are explained. Pushing a system out of equilibrium may favor the condensation of unconserved quasiparticles, but suppresses the condensate fraction of conserved particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  2. E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The Mathematics of the Bose Gas and Its Condensation (Birkhauser, Basel, 2005).

    MATH  Google Scholar 

  3. V. Letokhov, Laser Control of Atoms and Molecules (Oxford University, New York, 2007).

    Google Scholar 

  4. C. J. Pethik and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University, Cambridge, 2008).

    Book  Google Scholar 

  5. P. W. Courteille, V. S. Bagnato, and V. I. Yukalov, Laser Phys. 11, 659 (2001).

    Google Scholar 

  6. J. O. Andersen, Rev. Mod. Phys. 76, 599 (2004).

    Article  ADS  MATH  Google Scholar 

  7. V. I. Yukalov, Laser Phys. Lett. 1, 435 (2004).

    Article  ADS  Google Scholar 

  8. K. Bongs and K. Sengstock, Rep. Prog. Phys. 67, 907 (2004).

    Article  ADS  Google Scholar 

  9. V. I. Yukalov and M. D. Girardeau, Laser Phys. Lett. 2, 375 (2005).

    Article  ADS  Google Scholar 

  10. A. Posazhennikova, Rev. Mod. Phys. 78, 1111 (2006).

    Article  ADS  Google Scholar 

  11. V. I. Yukalov, Laser Phys. Lett. 4, 632 (2007).

    Article  ADS  Google Scholar 

  12. N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008).

    Article  ADS  Google Scholar 

  13. V. A. Yurovsky, M. Olshanii, and D. S. Weiss, Adv. At. Mol. Opt. Phys. 55, 61 (2008).

    Article  Google Scholar 

  14. W. Ketterle, and M. W. Zwierlein, Riv. Nuovo Cimento 31, 247 (2008).

    Google Scholar 

  15. C. Moseley, O. Fialko, and K. Ziegler, Ann. Phys. (Berlin) 17, 561 (2008).

    MATH  Google Scholar 

  16. V. I. Yukalov, Laser Phys. 19, 1 (2009).

    Article  ADS  Google Scholar 

  17. A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).

    Article  ADS  Google Scholar 

  18. V. I. Yukalov, Phys. Part. Nucl. 42, 460 (2011).

    Article  Google Scholar 

  19. J. M. Blatt, K. W. Boer, and W. Brandt, Phys. Rev. 126, 1691 (1962).

    Article  ADS  Google Scholar 

  20. L. Keldysh and A. N. Kozlov, JETP Lett. 27, 521 (1968).

    Google Scholar 

  21. W. Kohn and D. Sherrington, Rev. Mod. Phys. 42, 1 (1970).

    Article  ADS  MATH  Google Scholar 

  22. L. V. Butov, Solid State Commun. 127, 89 (2003).

    Article  ADS  Google Scholar 

  23. J. P. Eisenstein and A. H. MacDonald, Nature 432, 691 (2004).

    Article  ADS  Google Scholar 

  24. H. Deng, G. Weihs, C. Santory, J. Bloch, and Y. Yamamoto, Science 298, 199 (2002).

    Article  ADS  Google Scholar 

  25. J. Keeling, F. M. Marchetti, M. H. Szymanska, and P. B. Littlewood, Semicond. Sci. Technol. 22, 1 (2007).

    Article  ADS  Google Scholar 

  26. M. H. Szymanska, J. Keeling, and P. B. Littlewood, Phys. Rev. B 75, 195331 (2007).

    Article  ADS  Google Scholar 

  27. E. R. Bittner and C. Silva, arXiv:1104.2017 (2011).

  28. J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature 468, 545 (2010).

    Article  ADS  Google Scholar 

  29. T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000).

    Article  ADS  Google Scholar 

  30. M. Matsumoto, B. Normand, T. M. Rice, and M. Sigrist, Phys. Rev. B 69, 054423 (2004).

    Article  ADS  Google Scholar 

  31. G. Misguich and M. Oshikawa, J. Phys. Soc. Jpn. 73, 3429 (2004).

    Article  ADS  MATH  Google Scholar 

  32. J. Sirker, A. Weisse, and O. P. Sushkov, J. Phys. Soc. Jpn. 74, 129 (2005).

    Article  Google Scholar 

  33. T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16, 569 (1956).

    Article  ADS  MATH  Google Scholar 

  34. E. G. Batyev and L. S. Braginskii, J. Exp. Theor. Phys. 60, 781 (1984).

    Google Scholar 

  35. Y. Kagan and L. A. Manakova, Phys. Lett. A 361, 401 (2007).

    Article  ADS  Google Scholar 

  36. D. L. Mills, Phys. Rev. Lett. 98, 039701 (2007).

    Article  ADS  Google Scholar 

  37. R. P. Feynman and S. Weinberg, Elementary Particles and the Laws of Physics (Cambridge University, Cambridge, 1987).

    Google Scholar 

  38. N. Manton and P. Sutcliffe, Topological Solitons (Cambridge University, Cambridge, 2004).

    Book  MATH  Google Scholar 

  39. Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys. 83, 247 (2011).

    Article  ADS  Google Scholar 

  40. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).

    Article  ADS  Google Scholar 

  41. S. Flach and S. R. Willis, Phys. Rep. 295, 181 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  42. K. P. Marzlin and V. I. Yukalov, Eur. Phys. J. D 33, 253 (2005).

    Article  ADS  Google Scholar 

  43. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Phys. Rev. A 56, 4845 (1997).

    Article  ADS  Google Scholar 

  44. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 10, 26 (2000).

    Google Scholar 

  45. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 11, 455 (2001).

    Google Scholar 

  46. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 12, 231 (2002).

    Google Scholar 

  47. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 12, 1325 (2002).

    Google Scholar 

  48. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Phys. Rev. A 66, 043602 (2002).

    Article  ADS  Google Scholar 

  49. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 13, 551 (2003).

    Google Scholar 

  50. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 13, 861 (2003).

    Google Scholar 

  51. V. I. Yukalov, K. P. Marzlin, and E. P. Yukalova, Laser Phys. 14, 565 (2004).

    Google Scholar 

  52. V. I. Yukalov, K. P. Marzlin, and E. P. Yukalova, Phys. Rev. A 69, 023620 (2004).

    Article  ADS  Google Scholar 

  53. V. I. Yukalov, Laser Phys. Lett. 3, 406 (2006).

    Article  ADS  Google Scholar 

  54. V. I. Yukalov and V. S. Bagnato, Laser Phys. Lett 6, 399 (2009).

    Article  ADS  Google Scholar 

  55. R. L. Stratonovich, Phys. Dokl. 2, 416 (1958).

    Google Scholar 

  56. A. Khare, Fractional Statistics and Quantum Theory (World Sci., Singapore, 2005).

    Book  MATH  Google Scholar 

  57. O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

    Article  ADS  MATH  Google Scholar 

  58. A. J. Coleman and V. I. Yukalov, Mod. Phys. Lett. B 5, 1679 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  59. A. J. Coleman and V. I. Yukalov, Nuovo Cimento B 107, 535 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  60. A. J. Coleman and V. I. Yukalov, Nuovo Cimento B 108, 1377 (1993).

    Article  ADS  Google Scholar 

  61. N. N. Bogolubov, Lectures on Quantum Statistics (Gordon and Breach, New York, 1967), vol. 1.

    Google Scholar 

  62. N. N. Bogolubov, Lectures on Quantum Statistics (Gordon and Breach, New York, 1970), vol. 2.

    Google Scholar 

  63. V. I. Yukalov, Laser Phys. 16, 511 (2006).

    Article  ADS  Google Scholar 

  64. V. I. Yukalov, Phys. Rev. E 72, 066119 (2005).

    Article  ADS  Google Scholar 

  65. V. I. Yukalov, Phys. Lett. A 359, 712 (2006).

    Article  ADS  Google Scholar 

  66. V. I. Yukalov, Int. J. Mod. Phys. B 21, 69 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. V. I. Yukalov, Ann. Phys. (N.Y.) 323, 461 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. V. I. Yukalov, Phys. Lett. A 375, 2797 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  69. N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. P. C. Hohenberg and P. C. Martin, Ann. Phys. (N.Y.) 34, 291 (1965).

    Article  ADS  Google Scholar 

  71. J. Gavoret and P. Nozieres, Ann. Phys. (N.Y.) 28, 349 (1964).

    Article  ADS  Google Scholar 

  72. V. I. Yukalov, Mod. Phys. Lett. B 5, 725 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  73. V. Kalogera and G. Baym, Astrophys. J. Lett. 470, 61 (1996).

    Article  ADS  Google Scholar 

  74. T. S. Olson, Phys. Rev. C 63, 015802 (2000).

    Article  ADS  Google Scholar 

  75. T. J. Battefeld and D. A. Easson, Phys. Rev. D 70, 103516 (2004).

    Article  ADS  Google Scholar 

  76. T. Banks, W. Fischler, and L. Mannelli, Phys. Rev. D 71, 123514 (2005).

    Article  ADS  Google Scholar 

  77. V. I. Yukalov, Laser Phys. Lett. 7, 831 (2010).

    Article  ADS  Google Scholar 

  78. V. I. Yukalov, Phys. Rev. A 72, 033608 (2005).

    Article  ADS  Google Scholar 

  79. A. A. High, J. R. Leonard, A. T. Hammack, M. M. Fogler, L. V. Butov, A. V. Kavokin, K. L. Campmann, and A. C. Gossard, arXiv:1109.0253 (2011).

  80. O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).

    Article  ADS  Google Scholar 

  81. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  82. J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Phys. Rev. A 73, 033605 (2006).

    Article  ADS  Google Scholar 

  83. J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, and P. R. Johnson, Phys. Rev. Lett. 98, 200405 (2007).

    Article  ADS  Google Scholar 

  84. P. J. Lee, M. Anderlini, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. 99, 020402 (2007).

    Article  ADS  Google Scholar 

  85. S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, Nature 448, 1029 (2007).

    Article  ADS  Google Scholar 

  86. P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Fölling, and I. Bloch, Phys. Rev. Lett. 101, 090404 (2008).

    Article  ADS  Google Scholar 

  87. I. Danshita, J. E. Williams, C. A. R. Sa de Melo, and C. W. Clark, Phys. Rev. A 76, 043606 (2007).

    Article  ADS  Google Scholar 

  88. I. Danshita, C. A. R. Sa de Melo, and C. W. Clark, Phys. Rev. A 77, 063609 (2008).

    Article  ADS  Google Scholar 

  89. V. I. Yukalov and E. P. Yukalova, Phys. Rev. A 78, 063610 (2008).

    Article  ADS  Google Scholar 

  90. V. I. Yukalov and E. P. Yukalova, Laser Phys. Lett. 6, 235 (2009).

    Article  ADS  Google Scholar 

  91. V. I. Yukalov and E. P. Yukalova, Phys. Lett. A 373, 1301 (2009).

    Article  ADS  MATH  Google Scholar 

  92. V. I. Yukalov and E. P. Yukalova, Laser Phys. 21, 1448 (2011).

    Article  ADS  Google Scholar 

  93. V. O. Nesterenko, A. N. Novikov, F. F. de Souza Cruz, and E. L. Lapolli, Laser Phys. 19, 616 (2009).

    Article  ADS  Google Scholar 

  94. C. Weiss and N. Teichmann, Laser Phys. 19, 673 (2009).

    Article  ADS  Google Scholar 

  95. B. Oles, P. Zin, J. Chwedenczuk, K. Sacha, and M. Trippenbach, Laser Phys. 20, 671 (2010).

    Article  ADS  Google Scholar 

  96. V. I. Yukalov, A. Rakhimov, and S. Mardonov, Laser Phys. 21, 264 (2011).

    Article  ADS  Google Scholar 

  97. V. I. Yukalov, Symmetry 2, 40 (2010).

    Article  Google Scholar 

  98. V. I. Yukalov, Physica A 155, 519 (1989).

    Article  ADS  Google Scholar 

  99. H. A. Jahn and E. Teller, Proc. Roy. Soc. London A 161, 220 (1937).

    Article  ADS  Google Scholar 

  100. I. B. Bersuker, The Jahn-Teller Effect (Cambridge University, Cambridge, 2006).

    Book  Google Scholar 

  101. T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

    Article  ADS  MATH  Google Scholar 

  102. S. V. Tyablikov, Methods in Quantum Theory of Magnetism (Plenum, New York, 1967).

    Google Scholar 

  103. A. S. Borovik-Romanov, Y. M. Bunkov, V. V. Dmitriev, and Y. M. Mukharsky, JETP Lett. 40, 1033 (1984).

    ADS  Google Scholar 

  104. S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga, B. Hillebrands, and A. N. Slavin, Nature 443, 430 (2006).

    Article  ADS  Google Scholar 

  105. V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov, and A. N. Slavin, Phys. Rev. Lett. 100, 047205 (2008).

    Article  ADS  Google Scholar 

  106. G. E. Volovik, J. Low Temp. Phys. 153, 266 (2008).

    Article  ADS  Google Scholar 

  107. Y. M. Bunkov, Phys. Usp. 53, 848 (2010).

    Article  ADS  Google Scholar 

  108. Y. M. Bunkov and G. E. Volovik, J. Phys. Condens. Matter 22, 164210 (2010).

    Article  ADS  Google Scholar 

  109. V. I. Yukalov, Phys. Rev. Lett. 75, 3000 (1995).

    Article  ADS  Google Scholar 

  110. V. I. Yukalov, Laser Phys. 5, 526 (1995).

    Google Scholar 

  111. V. I. Yukalov, Laser Phys. 5, 970 (1995).

    Google Scholar 

  112. V. I. Yukalov, Phys. Rev. B 53, 9232 (1996).

    Article  ADS  Google Scholar 

  113. V. I. Yukalov and E. P. Yukalova, Phys. Part. Nucl. 31, 561 (2000).

    Google Scholar 

  114. V. I. Yukalov and E. P. Yukalova, Phys. Rev. Lett. 88, 257601 (2002).

    Article  ADS  Google Scholar 

  115. V. I. Yukalov, Laser Phys. 12, 1089 (2002).

    Google Scholar 

  116. V. I. Yukalov and E. P. Yukalova, Phys. Part. Nucl. 35, 348 (2004).

    Google Scholar 

  117. V. I. Yukalov, Phys. Rev. B 71, 184432 (2005).

    Article  ADS  Google Scholar 

  118. V. I. Yukalov, V. K. Henner, and P. V. Kharebov, Phys. Rev. B 77, 134427 (2008).

    Article  ADS  Google Scholar 

  119. V. I. Yukalov, V. K. Henner, P. V. Kharebov, and E. P. Yukalova, Laser Phys. Lett. 5, 887 (2008).

    Article  ADS  Google Scholar 

  120. V. I. Yukalov and E. P. Yukalova, Laser Phys. Lett. 8, 804 (2011).

    Article  ADS  Google Scholar 

  121. A. V. Chubukov and D. K. Morr, Phys. Rev. B 52, 3521 (1995).

    Article  ADS  Google Scholar 

  122. A. V. Syromyatnikov, Phys. Rev. B 75, 134421 (2007).

    Article  ADS  Google Scholar 

  123. V. I. Yukalov and A. S. Shumovsky, Lectures on Phase Transitions (World Scientific, Singapore, 1990).

    Google Scholar 

  124. T. Giarmachi and A. M. Tsvelik, Phys. Rev. B 59, 11398 (1999).

    Article  ADS  Google Scholar 

  125. S. Wessel and S. Haas, Phys. Rev. B 62, 316 (2000).

    Article  ADS  Google Scholar 

  126. P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

    Article  ADS  MATH  Google Scholar 

  127. N. N. Bogolubov, Lectures on Quantum Statistics (Ryadyanska Shkola, Kiev, 1949).

    Google Scholar 

  128. J. Schwinger, On Angular Momentum (US Atomic Energy Commission, Washington, 1952).

    Book  Google Scholar 

  129. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994).

    Book  Google Scholar 

  130. A. J. Coleman, E. P. Yukalova, and V. I. Yukalov, Int. J. Quantum Chem. 54, 211 (1995).

    Article  Google Scholar 

  131. G. Su and M. Suzuki, Int. J. Mod. Phys. B 13, 925 (1999).

    Article  ADS  Google Scholar 

  132. S. Sarker, C. Jayaprakash, H. R. Krishnamurthy, and M. Ma, Phys. Rev. B 40, 5028 (1989).

    Article  ADS  Google Scholar 

  133. D. Yoshioka, J. Phys. Soc. Jpn. 58, 3733 (1989).

    Article  ADS  Google Scholar 

  134. T. N. De Silva, M. Ma, and F. C. Zhang, Phys. Rev. B 66, 104417 (2002).

    Article  ADS  Google Scholar 

  135. S. E. Barnes, J. Phys. F 6, 1375 (1976).

    Article  ADS  Google Scholar 

  136. N. Read and D. M. Newns, J. Phys. C 16, 3273 (1983).

    Article  ADS  Google Scholar 

  137. N. Read and D. M. Newns, Adv. Phys. 36, 799 (1988).

    Google Scholar 

  138. P. S. Riseborough, Phys. Rev. B 45, 13984 (1992).

    Article  ADS  Google Scholar 

  139. S. H. S. Salk and S. S. Lee, Physica B 284, 441 (2000).

    Article  ADS  Google Scholar 

  140. D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).

    Article  ADS  Google Scholar 

  141. D. Yoshioka, J. Phys. Soc. Jpn. 58, 1516 (1989).

    Article  ADS  Google Scholar 

  142. J. W. Rasul and Y. Bai, J. Phys. Condens. Matter 8, 4495 (1996).

    Article  ADS  Google Scholar 

  143. E. A. Kochetov and A. Ferraz, Phys. Rev. B 70, 052508 (2004).

    Article  ADS  Google Scholar 

  144. S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).

    Article  ADS  Google Scholar 

  145. V. I. Yukalov, Phys. Rep. 208, 395 (1991).

    Article  ADS  Google Scholar 

  146. V. I. Yukalov and E. P. Yukalova, Laser Phys. Lett. 2, 506 (2005).

    Article  ADS  Google Scholar 

  147. V. I. Yukalov and E. P. Yukalova, Phys. Rev. A 74, 063623 (2006).

    Article  ADS  Google Scholar 

  148. V. I. Yukalov and E. P. Yukalova, Phys. Rev. A 76, 013602 (2007).

    Article  ADS  Google Scholar 

  149. A. Rakhimov, E. Y. Sherman, and C. K. Kim, Phys. Rev. B 81, 020407 (2010).

    Article  ADS  Google Scholar 

  150. A. Rakhimov, S. Mardonov, and E. Y. Sherman, Ann. Phys. (N.Y.) 326, 2499 (2011).

    Article  ADS  MATH  Google Scholar 

  151. E. B. Sonin, Rev. Mod. Phys. 59, 87 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  152. B. V. Svistunov, Phys. Rev. B 52, 3647 (1995).

    Article  ADS  Google Scholar 

  153. S. K. Nemirovskii and W. Fiszdon, Rev. Mod. Phys. 67, 37 (1995).

    Article  ADS  Google Scholar 

  154. W. F. Vinen and J. J. Niemela, J. Low Temp. Phys. 128, 167 (2002).

    Article  Google Scholar 

  155. W. F. Vinen, J. Low Temp. Phys. 145, 7 (2006).

    Article  ADS  Google Scholar 

  156. M. Tsubota, J. Phys. Soc. Jpn. 77, 111006 (2008).

    Article  ADS  Google Scholar 

  157. V. I. Yukalov, Laser Phys. Lett. 7, 467 (2010).

    Article  ADS  Google Scholar 

  158. M. Tsubota, K. Kasamatsu, and M. Kobayashi, arXiv:1004.5458 (2010).

  159. V. I. Yukalov, Theor. Math. Phys. 26, 274 (1976).

    Article  MathSciNet  Google Scholar 

  160. V. I. Yukalov, Theor. Math. Phys. 28, 652 (1976).

    Article  Google Scholar 

  161. V. I. Yukalov, Phys. Lett. A 81, 249 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  162. V. I. Yukalov, Phys. Lett. A 81, 433 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  163. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 19, 686 (2009).

    Article  ADS  Google Scholar 

  164. J. A. Seman, E. A. Henn, M. Haque, R. F. Shiozaki, E. R. Ramos, M. Caracanhas, P. Castilho, C. Castelo Branco, P. E. Tavares, F. J. Poveda-Cuevas, G. Roati, K. M. Magalhaes, and V. S. Bagnato, Phys. Rev. A 82, 033616 (2010).

    Article  ADS  Google Scholar 

  165. E. A. Henn, J. A. Seman, G. Roati, K. M. Magalhaes, and V. S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009).

    Article  ADS  Google Scholar 

  166. R. F. Shiozaki, G. D. Telles, V. I. Yukalov, and V. S. Bagnato, Laser Phys. Lett. 8, 393 (2011).

    Article  ADS  Google Scholar 

  167. J. A. Seman, E. A. Henn, R. F. Shiozaki, G. Roati, F. J. Poveda-Cuevas, K. M. Magalhäes, V. I. Yukalov, M. Tsubota, M. Kobayashi, K. Kasamatsu, and V. S. Bagnato, Laser Phys. Lett. 8, 691 (2011).

    Google Scholar 

  168. J. Dziarmaga, Adv. Phys. 59, 1063 (2010).

    Article  ADS  Google Scholar 

  169. V. I. Yukalov, Laser Phys. Lett. 8, 485 (2011).

    Article  ADS  Google Scholar 

  170. A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yukalov, V.I. Difference in Bose-Einstein condensation of conserved and unconserved particles. Laser Phys. 22, 1145–1168 (2012). https://doi.org/10.1134/S1054660X12070171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12070171

Keywords

Navigation