Skip to main content
Log in

Raman structural study of random copolymers of ethylene with 1-hexene

  • Laser Spectroscopy
  • Published:
Laser Physics

Abstract

Ethylene/1-hexene copolymers, which differ significantly in 1-hexene content (from 1.9 to 37.0 mol %), are studied by Raman spectroscopy. The copolymer spectra are compared with the Raman spectra of polyethylene at elevated temperatures. We have found that the phase and conformational order of the copolymer macromolecules depends strongly on the 1-hexene content. In particular, an increase in 1-hexene content leads to a decrease in content of the PE-like orthorhombic crystalline phase and in content of trans-conformers in the amorphous phase. The Raman signature at about 800 cm−1 provides information about the end conformers for the ethylene/1-hexene copolymers with high 1-hexene content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Oleinik, Polym. Sci. C 45, 17 (2003).

    Google Scholar 

  2. Metallocene-Based Polyolefins, Ed. by J. Scheirs and W. Kaminsky (John Wiley and Sons Ltd, Chichester, 1999).

    Google Scholar 

  3. S. Bensason, J. Minick, A. Moet, S. Chum, A. Hiltner, and E. Baer, J. Polym. Sci. B 34, 1301 (1996).

    Article  Google Scholar 

  4. J. T. Graham, R. G. Alamo, and L. Mandelkern, J. Polym. Sci. B 35, 213 (1997).

    Article  Google Scholar 

  5. S. Gonchukov, A. Sukhinina, D. Bakhmutov, and S. Minaeva, Laser Phys. Lett. 9, 73 (2012).

    Article  ADS  Google Scholar 

  6. W. Werncke, I. Latka, S. Sassning, B. Dietzek, M. E. Darvin, M. C. Meinke, J. Popp, K. König, J. W. Fluhr, and J. Lademann, Laser Phys. Lett. 8, 895 (2011).

    Article  ADS  Google Scholar 

  7. O. Samek, P. Zemánek, A. Jonás, and H. H. Telle, Laser Phys. Lett. 8, 701 (2011).

    Article  ADS  Google Scholar 

  8. P. Chen, Q. Tian, S. J. Baek, X. L. Shang, A. Park, Z. C. Liu, X. Q. Yao, J. Z. Wang, X. H. Wang, Y. Cheng, J. Peng, A. G. Shen, and J. M. Hu, Laser Phys. Lett. 8, 547 (2011).

    Article  ADS  Google Scholar 

  9. H. Bai, P. Chen, H. Fang, L. Lin, G. Q. Tang, G. G. Mu, W. Gong, Z. P. Liu, H. Wu, H. Zhao, and Z. C. Han, Laser Phys. Lett. 8, 78 (2011).

    Article  ADS  Google Scholar 

  10. O. Samek, J. F. M. Al-Marashi, and H. H. Telle, Laser Phys. Lett. 7, 378 (2010).

    Article  ADS  Google Scholar 

  11. I. M. Vlasova and A. M. Saletsky, Laser Phys. 21, 239 (2011).

    Article  ADS  Google Scholar 

  12. I. M. Vlasova and A. M. Saletsky, Laser Phys. 20, 1844 (2010).

    Article  ADS  Google Scholar 

  13. P. Pakhomov, S. Khizhnyak, and A. Tshmel, Laser Phys. 20, 936 (2010).

    Article  ADS  Google Scholar 

  14. P. C. Painter, M. M. Coleman, and J. L. Koenig, The Theory of Vibrational Spectroscopy and Its Application to Polymeric Materials (Wiley-Interscience, New York, 1982).

    Google Scholar 

  15. G. R. Strobl and W. Hagedorn, J. Polym. Sci.: Polym. Phys. Ed. 16, 1181 (1978).

    Article  ADS  Google Scholar 

  16. E. A. Sagitova, “Raman Structural Study of Polyethylene—Based Nanocomposites”, PhD Thesis (Prokhorov General Physics Institute, Moscow, 2008).

    Google Scholar 

  17. G. V. Fraser, P. J. Hendra, J. H. Walker, M. E. A. Cudby, and H. A. Willis, Die Makromolekulare Chemie 173, 205 (1973).

    Article  Google Scholar 

  18. K. Chernyshov, D. Gen, Yu. Shemouratov, K. Prokhorov, G. Nikolaeva, E. Sagitova, P. Pashinin, A. Kovalchuk, A. Klyamkina, P. Nedorezova, B. Shklyaruk, and V. Optov, Macromol. Symposia 296, 505 (2010).

    Article  Google Scholar 

  19. D. E. Gen, K. B. Chernyshov, K. A. Prokhorov, G. Yu. Nikolaeva, E. A. Sagitova, P. P. Pashinin, A. A. Kovalchuk, A. N. Klyamkina, P. M. Nedorezova, V. A. Optov, and B. F. Shklyaruk, Laser Phys. 20, 1354 (2010).

    Article  ADS  Google Scholar 

  20. R. Alamo, R. Domszy, and L. Mandelkern, J. Phys. Chem. 88, 6587 (1984).

    Article  Google Scholar 

  21. R. G. Alamo, E. K. M. Chan, L. Mandelkern, and I. G. Voigt-Martin, Macromolecules 25, 6381 (1992).

    Article  ADS  Google Scholar 

  22. V. Gaucher-Miri, C. Depecker, and R. Se’Gue’la, J. Polym. Sci. B 35, 2151 (1997).

    Article  Google Scholar 

  23. M. Gelfer, R. H. Horst, H. H. Winter, A. M. Heintz, and S. L. Hsu, Polymer 44, 2363 (2003).

    Article  Google Scholar 

  24. M. A. Kennedy, A. J. Peacock, M. D. Failla, J. C. Lucas, and L. Mandelkern, Macromolecules 28, 1407 (1995).

    Article  ADS  Google Scholar 

  25. B. Neway, M. S. Hedenqvist, V. B. F. Mathot, and U. W. Gedde, Polymer 42, 5307 (2001).

    Article  Google Scholar 

  26. K. E. Russell, D. C. Mcfaddin, B. K. Hunter, and R. D. Heyding, J. Polym. Sci. B 34, 2447 (1996).

    Article  Google Scholar 

  27. A. J. Satti, N. A. Andreucetti, R. Quijada, C. Sarmoria, J. M. Pastor, and E. M. Valles, J. Appl. Polym. Sci. 117, 290 (2010).

    Google Scholar 

  28. L. Mandelkern, R. Alamo, W. L. Mattice, and R. G. Snyder, Macromolecules 19, 2404 (1986).

    Article  ADS  Google Scholar 

  29. I. N. Meshkova, T. M. Ushakova, T. A. Ladygina, N. Yu. Kovaleva, L. A. Novokshonova, Polym. Bull. 44, 461 (2000).

    Article  Google Scholar 

  30. C. C. Naylor, R. J. Meier, B. J. Kip, K. P. J. Williams, S. M. Mason, N. Conroy, and D. L. Gerrard, Macromolecules 28, 2969 (1995).

    Article  ADS  Google Scholar 

  31. R. Mutter, W. Stille, and G. Strobl, J. Polym. Sci. B 31, 99 (1993).

    Article  Google Scholar 

  32. L. Kurelec, S. Rastogi, R. J. Meier, and P. J. Lemstra, Macromolecules 33, 5593 (2000).

    Article  ADS  Google Scholar 

  33. S. Abbate, G. Zerbi, and S. L. Wunder, J. Phys. Chem. 86, 3140 (1982).

    Article  Google Scholar 

  34. R. G. Snyder, D. G. Cameron, H. L. Casal, D. A. C. Compton, and H. H. Mantsch, Biochimica et Biophysica Acta 684, 111 (1982).

    Article  Google Scholar 

  35. L. Brambilla and G. Zerbi, Macromolecules 38, 3327 (2005).

    Article  ADS  Google Scholar 

  36. R. G. Snyder, J. Chem. Phys. 47, 1316 (1967).

    Article  ADS  Google Scholar 

  37. C. Gabriel, D. Lilge, and M. O. Kristen, Macromol. Rapid Commun. 24, 109 (2003).

    Article  Google Scholar 

  38. I. Kim, J.-M. Zhou, and H. Chung, J. Polym. Sci. A 38, 1687 (2000).

    Article  Google Scholar 

  39. Yu. V. Shemouratov, K. A. Prokhorov, G. Yu. Nikolaeva, P. P. Pashinin, A. A. Kovalchuk, A. N. Klyamkina, P. M. Nedorezova, K. V. Demidenok, Yu. A. Lebedev, and E. M. Antipov, Laser Phys. 18, 554 (2008).

    Article  ADS  Google Scholar 

  40. K. Tashiro, S. Sasaki, and M. Kobayashi, Macromolecules, 29, 7460 (1996).

    Article  ADS  Google Scholar 

  41. G. Zerbi and S. Abbate, Chem. Phys. Lett. 80, 455 (1981).

    Article  ADS  Google Scholar 

  42. H. Tanaka and T. Takemura, Japanese J. Appl. Phys. 22, 1001 (1983).

    Article  ADS  Google Scholar 

  43. R. G. Snyder, H. L. Strauss, and C. A. Elliger, J. Phys. Chem. 86, 5145 (1982).

    Article  Google Scholar 

  44. N. V. Venkataraman and S. Vasudevan, J. Phys. Chem. B 106, 7766 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Zavgorodnev.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavgorodnev, Y.V., Prokhorov, K.A., Novokshonova, L.A. et al. Raman structural study of random copolymers of ethylene with 1-hexene. Laser Phys. 22, 730–737 (2012). https://doi.org/10.1134/S1054660X12040305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12040305

Keywords

Navigation