Skip to main content

Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

Abstract

In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ∼240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, Laser Phys. Lett. 8, 617 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).

  3. 3.

    D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nature Photon. 1, 709 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    M. Bonesi, S. Matcher, and I. Meglinski, Laser Phys. 20, 1491 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    H. Ullah, M. Atif, S. Firdous, M. S. Mehmood, M. Ikram, C. Kurachi, C. Grecco, G. Nicolodelli, and V. S. Bagnato, Laser Phys. Lett. 7, 889 (2010).

    Article  Google Scholar 

  6. 6.

    R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, Laser Phys. Lett. 8, 164 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    H. Q. Zhong, Z. Y. Guo, H. J. Wei, C. C. Zeng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 315 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    H. Q. Zhong, Z. Y. Guo, H. J. Wei, J. L. Si, L. Guo, Q. L. Zhao, C. C. Zheng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 388 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, Laser Phys. Lett. 8, 71 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, Laser Phys. Lett. 8, 247 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    X. Guo, Z. Y. Guo, H. J. Wei, H. Q. Yang, Y. H. He, S. S. Xie, G. Y. Wu, H. Q. Zhong, L. Q. Li, and Q. L. Zhao, Laser Phys. 20, 1849 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    I. V. Meglinski, C. Buranachai, and L. A. Terry, Laser Phys. Lett. 7, 307 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    M. T. Tsai, F. Y. Chang, Y. J. Lee, J. D. Lee, H. C. Wang, and C. K. Lee, Opt. Express 19, 7559 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, Laser Phys. Lett. 8, 629 (2011).

    Article  Google Scholar 

  15. 15.

    B. Veksler, E. Kobzev, M. Bonesi, and I. Meglinski, Laser Phys. Lett. 5, 236 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    M. Bonesi, S. G. Proskurin, and I. V. Meglinski, Laser Phys. 20, 891 (2010).

    ADS  Article  Google Scholar 

  17. 17.

    J. Lauri, A. V. Bykov, A. V. Priezzhev, and R. Myllylá, Laser Phys. 21, 813 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    C. Macdonald and I. Meglinski, Laser Phys. Lett. 8, 324 (2011).

    Article  Google Scholar 

  19. 19.

    M. Yamanari, S. Makita, and Y. Yasuno, Opt. Express 16, 5892 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).

    Article  Google Scholar 

  21. 21.

    S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, Opt. Express 11, 3598 (2003).

    ADS  Article  Google Scholar 

  22. 22.

    M. Wojtkowski, V. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404 (2004).

    ADS  Article  Google Scholar 

  23. 23.

    B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, Opt. Express 12, 2435 (2004).

    ADS  Article  Google Scholar 

  24. 24.

    S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, Opt. Express 11, 2953 (2003).

    ADS  Article  Google Scholar 

  25. 25.

    R. K. Manapuram, V. G. R. Manne, and K. V. Larin, Laser Phys. 18, 1080 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, Opt. Express 18, 13964 (2010).

    ADS  Article  Google Scholar 

  27. 27.

    M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. Da Silva, Opt. Lett. 23, 228 (1998).

    ADS  Article  Google Scholar 

  28. 28.

    U. Morgner, W. Drexler, F. X. Kártner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).

    Google Scholar 

  29. 29.

    S. Makita, T. Fabritius, and Y. Yasuno, Opt. Express 16, 8406 (2008).

    Google Scholar 

  30. 30.

    R. K. Wang and L. An, Opt. Express 17, 8926 (2009).

    ADS  Article  Google Scholar 

  31. 31.

    M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, Opt. Express 17, 12385 (2009).

    ADS  Article  Google Scholar 

  32. 32.

    J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, Appl. Phys. Lett. 89, 073901 (2006).

    ADS  Article  Google Scholar 

  33. 33.

    Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, Opt. Express 15, 6121 (2007).

    ADS  Article  Google Scholar 

  34. 34.

    R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).

    ADS  Article  Google Scholar 

  35. 35.

    M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, Opt. Express 16, 2547 (2008).

    ADS  Article  Google Scholar 

  36. 36.

    C. M. Eigenwillig, B. R. Biederman, G. Palte, and R. Huber, Opt. Express 16, 8916 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, Opt. Lett. 32, 2049 (2007).

    ADS  Article  Google Scholar 

  38. 38.

    A. A. Moiseev, G. V. Gelikonov, E. A. Mashcovitch, and V. M. Gelikonov, Laser Phys. Lett. 7, 505 (2010).

    ADS  Article  Google Scholar 

  39. 39.

    M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, Opt. Express 16, 15847 (2008).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. -T. Tsai.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsai, M.T., Chang, F.Y. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser. Laser Phys. 22, 791–796 (2012). https://doi.org/10.1134/S1054660X1204024X

Download citation

Keywords

  • Optical Coherence Tomography
  • Hair Follicle
  • Laser Phys
  • Laser Physics
  • Face Image