Skip to main content
Log in

Non-perturbative approach to bosonic multi-pair creation in arbitrary external fields

  • Ultrafast Optics and Strong Field Physics
  • Published:
Laser Physics

Abstract

We study the bosonic pair creation from the vacuum by an external force field of arbitrary strength and shape in space and time. Our approach is similar to the computational quantum field theory developed for fermions. The non-perturbative solutions enable us to study the single and multiple boson-antiboson pair dynamics. The closed-form analytical expressions are based on the set of solutions to the time dependent Klein-Gordon equation that may be obtained numerically. In contrast to the dynamics for electron/positron pairs, the boson pair creation is not limited by the Paul exclusion principle and reveals an enhancement of the vacuum’s decay rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Anderson, Phys. Rev. 43, 491 (1933).

    Article  ADS  Google Scholar 

  2. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer Verlag, Berlin, 1985).

    Google Scholar 

  4. D. L. Burke, R. C. Field, G. Horton-Smith, et al., Phys. Rev. Lett. 79, 1626 (1997).

    Article  ADS  Google Scholar 

  5. V. Yanovsky, V. Chvykov, G. Kalinchenko, et al., Opt. Express. 16, 2109 (2008).

    Article  ADS  Google Scholar 

  6. For experimental proposals, http://www.extreme-light-infrastructure.eu/.

  7. N. B. Narozhny, S. S. Bulanov, V. D. Mur, and V. S. Popov, Phys. Lett., Ser. A 330 (2004).

  8. F. Hebenstreit, R. Alkofer, and H. Gies, Phys. Rev., Ser. D 78, 061701 (2008).

    Article  ADS  Google Scholar 

  9. M. Ruf, G. R. Mocken, C. Müller, et al., Phys. Rev. Lett. 102, 080402 (2009).

    Article  ADS  Google Scholar 

  10. A. M. Fedotov, Laser Phys. 19, 214 (2009).

    Article  ADS  Google Scholar 

  11. C. Müller, C. Deneke, M. Ruf, et al., Laser Phys. 19, 791 (2009).

    Article  ADS  Google Scholar 

  12. C. Müller, K. Z. Hatsagortsyan, M. Ruf, et al., Laser Phys. 19, 1743 (2009).

    Article  ADS  Google Scholar 

  13. K. Krajewska, Laser Phys. 21, 1275 (2011).

    Article  ADS  Google Scholar 

  14. A. A. Lebed’ and S. P. Roshchupkin, Laser Phys. 21, 1613 (2011).

    Article  ADS  Google Scholar 

  15. Atoms in Intense Laser Fields, Ed. by M. Gavrila (Academic, Orlando, 1992).

    Google Scholar 

  16. Multiphoton Processes, Ed. by L. F. DiMauro, R. R. Freeman, K.C. Kulander (AIP, New York, 2000).

    Google Scholar 

  17. Super-Intense Laser-Atom Physics, Ed. by B. Piraux and K. Rzazewski, NATO Science Series (Kluwer Academic Publishers, Dordrecht, 2000).

    Google Scholar 

  18. I. A. Burenkov, A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. Lett. 7, 409 (2010).

    Article  ADS  Google Scholar 

  19. C. H. Keitel, Cont. Phys. 42, 353 (2001).

    Article  ADS  Google Scholar 

  20. Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rep. 427, 41 (2006).

    Article  ADS  Google Scholar 

  21. S. S. Bulanov, V. D. Mur, N. B. Narozhny, et al., Phys. Rev. Lett. 104, 220404 (2010).

    Article  ADS  Google Scholar 

  22. M. Jiang, W. Su, X. Lu, et al., Phys. Rev., Ser. A 83, 053402 (2011).

    Article  ADS  Google Scholar 

  23. A. Di Piazza and G. Calucci, Phys. Rev., Ser. D 65, 125019 (2002).

    Article  ADS  Google Scholar 

  24. S. P. Kim and D. N. Page, Phys. Rev., Ser. D 73, 065020 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  25. G. V. Dunne and C. Schubert, Phys. Rev., Ser. D 72, 105004 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  26. H. Gies and K. Klingmüller, Phys. Rev., Ser. D 72, 065001 (2005).

    Article  Google Scholar 

  27. G. V. Dunne and C. Schubert, Phys. Rev., Ser. D 73, 065028 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  28. D. D. Dietrich and G. V. Dunne, J. Phys., Ser. A 40, 825 (2007).

    MathSciNet  ADS  Google Scholar 

  29. R. Schützhold, H. Gies, and G. Dunne, Phys. Rev. Lett. 101, 130404 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Cheng, Q. Su, and R. Grobe, Phys. Rev., Ser. A 80, 013410 (2009).

    Article  ADS  Google Scholar 

  31. R. E. Wagner, M. R. Ware, Q. Su, and R. Grobe, Phys. Rev., Ser. A 81, 024101 (2010).

    Article  ADS  Google Scholar 

  32. R. E. Wagner, M. R. Ware, Q. Su, and R. Grobe, Phys. Rev., Ser. A 81, 052104 (2010).

    Article  ADS  Google Scholar 

  33. H. Feshbach and F. Villars, Rev. Mod. Phys. 30 (1958).

  34. A. Wachter, Relativistische Quantenmechanik (Springer, Berlin, 2005).

    MATH  Google Scholar 

  35. For a generalization of this definition for densities inside the interaction zone, see K. D. Lamb, C. C. Gerry, Q. Su, and R. Grobe, Phys. Rev. A 75, 013425 (2007) and Ref. [36].

    Article  ADS  Google Scholar 

  36. C. C. Gerry, Q. Su, and R. Grobe, Phys. Rev., Ser. A 74, 044103 (2006).

    Article  ADS  Google Scholar 

  37. For a pedagogical review on partition theory, see, e.g., G. Royle, “Partitions and Permutations,” http://undergraduate.csse.uwa.edu.au/units/CITS7209/partition.pdf.

  38. F. Sauter, Z. Phys. 69, 742 (1931).

    Article  ADS  MATH  Google Scholar 

  39. F. Sauter, Z. Phys. 73, 547 (1931).

    ADS  MATH  Google Scholar 

  40. B. R. Holstein, Am. J. Phys. 66, 507 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  41. B. R. Holstein, Am. J. Phys. 67, 499 (1999).

    Article  ADS  Google Scholar 

  42. T. Cheng, Q. Su, and R. Grobe, Laser Phys. 19, 1735 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Su.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Q., Li, Y.T. & Grobe, R. Non-perturbative approach to bosonic multi-pair creation in arbitrary external fields. Laser Phys. 22, 745–752 (2012). https://doi.org/10.1134/S1054660X12040226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12040226

Keywords

Navigation