Skip to main content
Log in

Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Fyodorov and V. V. Durnev, Ann. Ophthalmol. 13, 115 (1981).

    Google Scholar 

  2. I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, et al., Laser Surg. Med. 10, 463 (1990).

    Article  Google Scholar 

  3. R. M. Kurtz, C. Horvath, H. H. Liu, et al., J. Refract. Surg. 14, 541 (1998).

    Google Scholar 

  4. A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, Appl. Phys., Ser. B 81, 1015 (2005).

    Article  ADS  Google Scholar 

  5. H. Lubatschowski, G. Maatz, A. Heisterkamp, et al., Graefes Arch. Clin. Exp. Ophthalmol. 238, 33 (2000).

    Article  Google Scholar 

  6. A. Heisterkamp, T. Mamom, W. Drommer, et al., Laser Phys. 13, 743 (2003).

    Google Scholar 

  7. V. P. Gabel, R. Birngruber, and F. Hillenkamp, in International Congress Series no. 450, XXIII Concilium Ophthalmologicum, Kyoto, Ed. by K. Shimizu, Princeton, NJ: Excerpta Medica, 1978, p. 658–662.

    Google Scholar 

  8. A. J. Augustin, Ophthalmo-Chirurgie 15, 19 (2003).

    Google Scholar 

  9. A. A. Alekhin, A. A. Ionin, S. E. Kozhushko, et al., Laser Phys. Lett. 7, 463 (2010).

    Article  ADS  Google Scholar 

  10. P. Chen, C. P. Zhang, X. B. Fu, et al., Laser Phys. 21, 554 (2011).

  11. H. Ullah, M. Atif, S. Firdous, et al., Laser Phys. Lett. 7, 889 (2010).

    Article  Google Scholar 

  12. P. Chen, C. Zhang, Q. San, et al., Laser Phys. Lett. 7, 899 (2010).

  13. R. J. Thomas, G. D. Noojin, D. J. Stolarski, et al., Laser Surg. Med. 31, 9 (2002).

    Article  Google Scholar 

  14. S. Schumacher, M. Sander, A. Stolte, et al., Proc. SPIE 5688, 268 (2005).

    Article  ADS  Google Scholar 

  15. S. Schumacher, M. Sander, A. Stolte, et al., Proc. SPIE 6138, 344 (2006).

    ADS  Google Scholar 

  16. M. Sander, M. Müller, and M. R. Tetz, Med. Laser Appl. 23, 39 (2008).

    Article  Google Scholar 

  17. M. Sander, A. Stolte, M. Müller, et al., Med. Laser Appl. 24, 158 (2009).

    Article  Google Scholar 

  18. R. Brinkmann, G. Huttmann, J. Rogener, et al., Laser Surg. Med. 27, 451 (2000).

    Article  Google Scholar 

  19. H. J. Hoffman and W. B. Telfair, J. Biomed. Opt. 4, 465 (1999).

    Article  ADS  Google Scholar 

  20. S. Schumacher, Master Thesis (University Hannover, 2004).

  21. O. Minet and J. Beuthan, Laser Phys. Lett. 2, 39 (2005).

    Article  ADS  Google Scholar 

  22. D. Chorvat and A. Chorvatova, Laser Phys. Lett. 6, 175 (2009).

    Article  ADS  Google Scholar 

  23. J. Beuthan, C. Dressler, U. Zabarylo, and O. Minet, Laser Phys. Lett. 7, 311 (2010).

    Article  ADS  Google Scholar 

  24. J. Beuthan, C. Dressler, U. Zabarylo, and O. Minet, Laser Phys. Lett. 6, 317 (2009).

    Article  ADS  Google Scholar 

  25. C. Dressler, D. Schwandt, J. Beuthan, et al., Laser Phys. Lett. 7, 817 (2010).

    Article  ADS  Google Scholar 

  26. I. H. L. Wallow, R. Birngruber, V. P. Gabel, et al., Adv. Ophthalmol. 31, 159 (1975).

    Google Scholar 

  27. L. Kagemann, A. Harris, H. S. Chung, et al., Brit. J. Ophthal. 82, 131 (1998).

    Article  Google Scholar 

  28. A. J. Welsh and M. J. C van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, 2nd Ed. (Springer, 2011).

  29. W. Liang, X. H. Zhang, J. Xia, et al., Laser Phys. Lett. 8, 286 (2011).

    Article  Google Scholar 

  30. M. Atif, H. Ullah, M.Y. Hamza, and M. Ikram, Laser Phys. Lett. 8, 629 (2011).

    Article  Google Scholar 

  31. I. Y. Yanina, V. A. Bochko, J. T. Alander, and V. V. Tuchin, Laser Phys. Lett. 8, 684 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sander.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sander, M., Minet, O., Zabarylo, U. et al. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime. Laser Phys. 22, 805–812 (2012). https://doi.org/10.1134/S1054660X12040172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12040172

Keywords

Navigation