Skip to main content
Log in

Harmonics generation in ultra-thin nanofilms irradiated by intense nonrelativistic laser pulses

  • Interaction of Laser Radiation with Matter
  • Published:
Laser Physics

Abstract

The problem of harmonics generation in nanotargets is considered at the range of parameters (a nanotarget diameter and a pump laser intensity) when the oscillation amplitude of an electron in a target is much larger than the target width. Electron motion in charged nanotargets in the presence of a laser field of different (non-relativistic) strength is considered. It is demonstarted that for lasers of infrared frequencies clusters do not possess strong enough potential to bound electrons with large oscillation amplitudes. Opposite to clusters, nanofilms were found to be very perspective targets in the problem considered. A simple analytic model and molecular dynamic simulations showed increased harmonics generation when the oscillation amplitude of electrons in a film becomes much larger, than the film width. Different regimes of generation are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Perry and G. Mourou, Science 264, 917 (1994).

    Article  ADS  Google Scholar 

  2. R. Lichters, J. M. ter Vehn, and A. Pukhov, Phys. Plasma 3, 3425 (1996).

    Article  ADS  Google Scholar 

  3. T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046404 (2006).

    Article  ADS  Google Scholar 

  4. A. Pukhov and J. M. ter Vehn, Appl. Phys. B 74, 355 (2002).

    Article  ADS  Google Scholar 

  5. I. Kostyukov, A. Pukhov, and S. Kiselev, Phys. Plasma 11, 5256 (2004).

    Article  ADS  Google Scholar 

  6. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, Nature 431, 541 (2004).

    Article  ADS  Google Scholar 

  7. T. P. Yu, A. Pukhov, G. Shvets, and M. Chen, Phys. Rev. Lett. 105, 065002 (2010).

    Article  ADS  Google Scholar 

  8. M. Chen, A. Pukhov, T. P. Yu, and Z. M. Sheng, Plasma Phys. Control. Fusion 53, 014004 (2011).

    Article  ADS  Google Scholar 

  9. A. Caldwell, K. Lotov, A. Pukhov, and G. Xia, Plasma Phys. Control. Fusion 53, 014003 (2011).

    Article  ADS  Google Scholar 

  10. T.-J. Wang, J.-F. Daigle, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Laser Phys. Lett. 7, 517 (2010).

    Article  ADS  Google Scholar 

  11. S. Suckewer and P. Jaeglé, Laser Phys. Lett. 6, 411 (2009).

    Article  ADS  Google Scholar 

  12. K. Krushelnick, W. Rozmus, U. Wagner, F. N. Beg, S. G. Bochkarev, E. L. Clark, A. E. Dangor, R. G. Evans, A. Gopal, H. Habara, S. P. D. Mangles, P. A. Norreys, A. P. L. Robinson, M. Tatarakis, M. S. Wei, and M. Zepf, Phys. Rev. Lett. 100, 125005 (2008).

    Article  ADS  Google Scholar 

  13. R. A. Ganeev, Laser Phys. 21, 25 (2011).

    Article  ADS  Google Scholar 

  14. C. Vozzi, M. Nisoli, J. Caumes, G. Sansone, S. Stagira, S. D. Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, and G. Tondello, Appl. Phys. Lett. 86, 111121 (2005).

    Article  ADS  Google Scholar 

  15. J. W. G. Tisch, T. Ditmire, D. J. Fraser, N. Hay, M. B. Mason, E. Springate, J. P. Marangos, and M. H. R. Hutchinson, J. Phys. B: At. Mol. Opt. Phys. 30, L709 (1997).

    Article  ADS  Google Scholar 

  16. T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, Phys. Rev. Lett. 76, 2472 (1996).

    Article  ADS  Google Scholar 

  17. T. Ditmire, R. A. Smith, J. W. G. Tisch, and M. H. R. Hutchinson, Phys. Rev. Lett. 78, 3121 (1997).

    Article  ADS  Google Scholar 

  18. M. Lewenstein, P. Balcou, M. Ivanov, A. L’Huillier, and P. Corkum, Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  19. J. A. Pérez-Hernández, J. Ramos, L. Roso, and L. Plaja, Laser Phys. 20, 1044 (2010).

    Article  ADS  Google Scholar 

  20. V. Véniard, R. Taïeb, and A. Maquet, Phys. Rev. A 60, 3952 (1999).

    Article  ADS  Google Scholar 

  21. S. X. Hu and Z. Z. Xu, Appl. Phys. Lett. 71, 2605 (1997).

    Article  ADS  Google Scholar 

  22. D. Zaretsky, P. Korneev, and W. Becker, J. Phys. B: At. Mol. Opt. Phys. 43, 105402 (2010).

    Article  ADS  Google Scholar 

  23. B. Shim, G. Hays, R. Zgadzaj, T. Ditmire, and M. C. Downer, Phys. Rev. Lett. 98, 123902 (2007).

    Article  ADS  Google Scholar 

  24. M. Lippitz, M. A. van Dijk, and M. Orrit, Nano Lett. 5, 799 (2005).

    Article  ADS  Google Scholar 

  25. I. Last and J. Jortner, J. Chem. Phys. 120, 1348 (2004).

    Article  ADS  Google Scholar 

  26. U. Saalmann and J. M. Rost, Phys. Rev. Lett. 91, 223401 (2003).

    Article  ADS  Google Scholar 

  27. Ph. A. Korneev, S. Popruzhenko, D. Zaretsky, and W. Becker, Laser Phys. Lett. 2, 452 (2005).

    Article  ADS  Google Scholar 

  28. I. Y. Kostyukov, JETP Lett. 73, 393 (2001).

    Article  ADS  Google Scholar 

  29. M. Kundu and D. Bauer, Phys. Rev. Lett. 96, 123401 (2006).

    Article  ADS  Google Scholar 

  30. M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, Phys. Rev. Lett. 80, 261 (1998).

    Article  ADS  Google Scholar 

  31. S. V. Fomichev, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, J. Phys. B: At. Mol. Opt. Phys. 36, 3817 (2003).

    Article  ADS  Google Scholar 

  32. S. V. Fomichev, D. F. Zaretsky, and W. Becker, J. Phys. B: At. Mol. Opt. Phys. 37, L175 (2004).

    Article  ADS  Google Scholar 

  33. S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, J. Phys. B: At. Mol. Opt. Phys. 39, 4933 (2006).

    Article  ADS  Google Scholar 

  34. S. V. Fomichev, D. F. Zaretsky, D. Bauer, and W. Becker, Phys. Rev. A 71, 013201 (2005).

    Article  ADS  Google Scholar 

  35. M. Kundu, S. V. Popruzhenko, and D. Bauer, Phys. Rev. A 76, 033201 (2007).

    Article  ADS  Google Scholar 

  36. S. V. Popruzhenko, M. Kundu, D. F. Zaretsky, and D. Bauer, Phys. Rev. A 77, 063201 (2008).

    Article  ADS  Google Scholar 

  37. S. Popruzhenko, D. Zaretsky, and D. Bauer, Laser Phys. Lett. 5, 631 (2008).

    Article  ADS  Google Scholar 

  38. A. Lihtenberg and M. Liberman, Regular and Stochastic Dynamics (Springer-Verlag, New York, 1992).

    Google Scholar 

  39. S. Fomichev, D. Zaretsky, and W. Becker, Phys. Rev. E 79, 085431 (2009).

    Google Scholar 

  40. B. Bhushan, Springer Handbook of Nanotechnology, 2nd ed. (Springer-Verlag, New York, 2004).

    Book  Google Scholar 

  41. V. V. Aristov, V. V. Kazmiruk, V. A. Kudryashov, V. I. Levashov, S. I. Red’kin, C. W. Hagen, and P. Kruit, Surf. Sci. 402–404, 337 (1998).

    Article  Google Scholar 

  42. I. Stepanov, R. van Aken, M. Zuiddam, and C. Hagen, Microelectron. Eng. 46, 435 (1999).

    Article  Google Scholar 

  43. I. Last and J. Jortner, Phys. Rev. A 64, 063201 (2001).

    Article  ADS  Google Scholar 

  44. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, 4th ed. (Butterworth Heinemann, 1980).

  45. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  MATH  ADS  Google Scholar 

  46. I. A. Burenkov, A. M. Popov, O. V. Tikhonova, and E. A. Volkovar, Laser Phys. Lett. 7, 409 (2010).

    Article  ADS  Google Scholar 

  47. N. I. Shvetsov-Shilovski, S. P. Goreslavski, S. V. Popruzhenko, and W. Becker, Laser Phys. 19, 1550 (2009).

    Article  ADS  Google Scholar 

  48. S. J. Plimpton, R. Pollock, and M. Stevens, “Particlemesh ewald, and Rrespa for Parallel Molecular Dynamics Simulations,” in Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing (1997).

  49. D. F. Zaretsky, Ph. A. Korneev, S. V. Popruzhenko, and W. Becker, J. Phys. B: At. Mol. Opt. Phys. 37, 4817 (2004).

    Article  ADS  Google Scholar 

  50. J. Zweiback, T. Ditmire, and M. D. Perry, Phys. Rev. A 59, R3166 (1999).

    Article  ADS  Google Scholar 

  51. L. Köller, M. Schumacher, J. Köhn, S. Teuber, J. Tiggesbaumker, and K. Meiwes-Broer, Phys. Rev. Lett. 82, 3786 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Korneev.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korneev, P. Harmonics generation in ultra-thin nanofilms irradiated by intense nonrelativistic laser pulses. Laser Phys. 22, 184–194 (2012). https://doi.org/10.1134/S1054660X11230095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11230095

Keywords

Navigation