Skip to main content
Log in

Atom state evolution and collapse in ultracold gases during light scattering into a cavity

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

We consider the light scattering from ultracold atoms trapped in an optical lattice inside a cavity. In such a system, both the light and atomic motion should be treated in a fully quantum mechanical way. The unitary evolution of the light-matter quantum state is shown to demonstrate the non-trivial phase dependence, quadratic in the atom number. This is essentially due to the dynamical self-consistent nature of the light modes assumed in our model. The collapse of the quantum state during the photocounting process is analyzed as well. It corresponds to the measurement-induced atom number squeezing. We show that, at the final stage of the state collapse, the shrinking of the width of the atom number distribution behaves exponentially in time. This is much faster than the square root time dependence, obtained for the initial stage of the state collapse. The exponentially fast squeezing appears due to the discrete nature of the atom number distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, Nature 450, 268 (2007).

    Article  ADS  Google Scholar 

  2. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Nature 450, 272 (2007).

    Article  ADS  Google Scholar 

  3. S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, Phys. Rev. Lett. 98, 053603 (2007).

    Article  ADS  Google Scholar 

  4. S. Ritter, F. Brennecke, C. Guerlin, K. Baumann, T. Donner, and T. Esslinger, Appl. Phys. B 95, 213 (2009).

    Article  ADS  Google Scholar 

  5. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science 322, 235 (2008).

    Article  ADS  Google Scholar 

  6. I. B. Mekhov, C. Maschler, and H. Ritsch, Nature Pliys. 3, 319 (2007).

    Article  ADS  Google Scholar 

  7. I. B. Mekhov, C. Maschler, and H. Ritsch, Phys. Rev. Lett. 98, 100402 (2007).

    Article  ADS  Google Scholar 

  8. I. B. Mekhov, C. Maschler, and H. Ritsch, Phys. Rev. A 76, 053618 (2007).

    Article  ADS  Google Scholar 

  9. C. Maschler, I. B. Mekhov, and H. Ritsch, Eur. Phys. J. D 46, 545 (2008).

    Article  ADS  Google Scholar 

  10. I. B. Mekhov and H. Ritsch, Laser Phys. 19, 610 (2009).

    Article  ADS  Google Scholar 

  11. I. B. Mekhov and H. Ritsch, Phys. Rev. Lett. 102, 020403 (2009).

    Article  ADS  Google Scholar 

  12. I. B. Mekhov, and H. Ritsch, Phys. Rev. A 80, 013604 (2009).

    Article  ADS  Google Scholar 

  13. I. B. Mekhov and H. Ritsch, Laser Phys. 20, 694 (2010).

    Article  ADS  Google Scholar 

  14. V. I. Yukalov and E. P. Yukalova, Laser Phys. Lett. 6, 235 (2009).

    Article  ADS  Google Scholar 

  15. D. A. R. Dalvit, J. Dziarmaga, and R. Onofrio, Phys. Rev. A 65, 033620 (2002).

    Article  ADS  Google Scholar 

  16. W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Filing, L. Pollet, and M. Greiner, Science 329, 547 (2010).

    Article  ADS  Google Scholar 

  17. M. Greiner, O. Mandel, Th. W. Hnsch, and I. Bloch, Nature 419, 51 (2002).

    Article  ADS  Google Scholar 

  18. Y. Castin and J. Dalibard, Phys. Rev. A 55, 4330 (1997).

    Article  ADS  Google Scholar 

  19. P. Horak and S. M. Barnett, J. Phys. B 32, 3421 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Mekhov.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mekhov, I.B., Ritsch, H. Atom state evolution and collapse in ultracold gases during light scattering into a cavity. Laser Phys. 21, 1486–1490 (2011). https://doi.org/10.1134/S1054660X11150163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11150163

Keywords

Navigation