Skip to main content
Log in

Qualitative and quantitative determination of human biomarkers by laser photoacoustic spectroscopy methods

  • Nonlinear Optics and Spectroscopy
  • Published:
Laser Physics

Abstract

The hypothesis that blood, urine and other body fluids and tissues can be sampled and analyzed to produce clinical information for disease diagnosis or therapy monitoring is the basis of modern clinical diagnosis and medical practice. The analysis of breath air has major advantages because it is a non-invasive method, represents minimal risk to personnel collecting the samples and can be often sampled. Breath air samples from the human subjects were collected using aluminized bags from QuinTron and analyzed using the laser photoacoustic spectroscopy (LPAS) technique. LPAS is used to detect traces of ethylene in breath air resulting from lipid peroxidation in lung epithelium following the radiotherapy and also traces of ammonia from patients subjected to hemodialysis for treatment of renal failure. In the case of patients affected by cancer and treated by external radiotherapy, all measurements were done at 10P(14) CO2 laser line, where the ethylene absorption coefficient has the largest value (30.4 cm−1 atm−1), whereas for patients affected by renal failure and treated by standard dialysis, all measurements were performed at 9R(30) CO2 laser line, where the ammonia absorption coefficient has the maximum value of 57 cm−1 atm−1. The levels of ethylene and ammonia in exhaled air, from patients with cancer and renal failure, respectively, were measured and compared with breath air contents from healthy humans. Human gas biomarkers were measured at sub-ppb (parts per billion) concentration sensitivities. It has been demonstrated that LPAS technique will play an important role in the future of exhaled breath air analysis. The key attributes of this technique are sensitivity, selectivity, fast and real time response, as well as its simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. W. Ball, Spectroscopy 21, 14 (2006).

    Google Scholar 

  2. H. Bai, P. Chen, H. Fang, L. Lin, G. Q. Tang, G. G. Mu, W. Gong, Z. P. Liu, H. Wu, H. Zhao, and Z. C. Han, Laser Phys. Lett. 8, 78 (2011).

    Article  ADS  Google Scholar 

  3. V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, Laser Phys. 20, 1641 (2010).

    Article  ADS  Google Scholar 

  4. A. Puiu, G. Giubileo, G. Addolorato, L. Revelli, G. Gasbarrini, R. Bellantone, A. D’Amore, C. P. Lombardi, and C. Carrozza, Laser Phys. 17, 448 (2007).

    Article  ADS  Google Scholar 

  5. T. H. Risby, Disease Marker Exhaled Breath 346, 113 (2002).

    Google Scholar 

  6. C. T. Eagle and J. Sloan, Chem. Educator 3, 1 (1998).

    Article  Google Scholar 

  7. R. S. Hubbard, J. Biol. Chem. 43, 57 (1920).

    Google Scholar 

  8. T. H. Risby and S. F. Solga, Appl. Phys. B 85, 421 (2006).

    Article  ADS  Google Scholar 

  9. R. A. Dweik and A. Amann, J. Breath Res. 2, 3 (2008).

    Article  Google Scholar 

  10. W. Cao and Y. Duan, Crit. Rev. Anal. Chem. 37, 3 (2007).

    Article  Google Scholar 

  11. QuinTron Instrument Company, Inc. QT02444 Rev. C—Catalog/Info Booklet.

  12. L. Pauling, A. B. Robinson, R. Teranishi, and P. Gary, Proc. Natl. Acad. Sci. USA 68, 2374 (1971).

    Article  ADS  Google Scholar 

  13. M. Philips, Sci. Amer., 74 (1992).

  14. R. Cernat, C. Matei, A. M. Bratu, C. Popa, D. C. A. Dutu, M. Patachia, M. Petrus, S. Banita, and D. C. Dumitras, Roman. Rep. Phys. 62, 617 (2010).

    Google Scholar 

  15. D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, C. Popa, and M. Patachia, Roman. Rep. Phys. 60, 593 (2008).

    Google Scholar 

  16. D. C. Dumitras, D. C. Dutu, C. Matei, R. Cernat, S. Banita, M. Patachia, A. M. Bratu, M. Petrus, and C. Popa, Laser Phys. 21 (2011, in press).

  17. C. Popa, R. Cernat, D. C. A. Dutu, and D. C. Dumitras, U.P.B. Sci. Bull. Series A (2010, in press).

  18. D. C. Dumitras, D. C. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, J. Optoelectron. Adv. Mater. 9, 3655 (2007).

    Google Scholar 

  19. D. C. Dumitras, S. Banita, A. M. Bratu, R. Cernat, D. C. A. Dutu, C. Matei, M. Patachia, M. Petrus, and C. Popa, Infrared Phys. Technol. J. 53, 308 (2010).

    Article  ADS  Google Scholar 

  20. K. S. Stevenson, K. Radhakrishnan, C. S. Patterson, L. C. McMillan, K. D. Skeldon, L. Buist, M. J. Padgett, and P. G. Shiels, J. Breath Res. 2, 8 (2008).

    Article  Google Scholar 

  21. O. Dale, H. Bergum, T. Lund, T. Nilsen, P. Aadahl, and R. Stenseth, Free Radical Res. 37, 815 (2003).

    Article  Google Scholar 

  22. L. R. Narasimhan, W. Goodman, C. Kumar, and N. Patel, Proc. Nat. Acad. Sci. 98, 4617 (2001).

    Article  ADS  Google Scholar 

  23. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 12 (2007).

    Article  Google Scholar 

  24. M. K. Bucci, A. Bevan, and M. Roach, CA Cancer J. Clin. 55, 117 (2005).

    Article  Google Scholar 

  25. R. W. Hamilton, Atlas of Diseases Kidney 5, 1.1 (1999).

    Google Scholar 

  26. M. V. Rocco, Adv. Chronic Kidney Disease 14, el (2007).

    ADS  Google Scholar 

  27. G. Giubileo, A. Puiu, F. Dell’Unto, M. Tomasi, and A. Fagnani, Laser Phys. 19, 245 (2009).

    Article  ADS  Google Scholar 

  28. L. R. Narasimhan, W. Goodman, and C. K. N. Patel, Proc. Nat. Acad. Sci. 98, 4617 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Popa.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, C., Bratu, A.M., Matei, C. et al. Qualitative and quantitative determination of human biomarkers by laser photoacoustic spectroscopy methods. Laser Phys. 21, 1336–1342 (2011). https://doi.org/10.1134/S1054660X11130238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11130238

Keywords

Navigation