Skip to main content
Log in

Supercontinuum generation in photonic crystal fiber using femtosecond pulses

  • Fiber Optics
  • Published:
Laser Physics

Abstract

Supercontinuum (SC) generation in photonic crystal fiber (PCF) is demonstrated using an amplified femtosecond stretched pulses. The stretched pulse is obtained from a mode-locked Erbium-doped fiber laser and operates at 1564 nm with a repetition rate of 8.27 MHz and a pulse width of 340 fs. Using a 50 m long PCF, broad SC spectra are observed starting from 1220 and 1050 nm for the corresponding 5.1 and 177 kW pump and spanning a wavelength region of more than 1750 nm. At a maximum peak pump power of 177 kW, flat SC which extends over bandwidths of 660 and 486 nm are obtained using 50 and 100 m piece of PCF respectively. However, the output power level is higher for the 100 m PCF especially at longer wavelength region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-H. Lin and J.-H. Lin, Laser Phys. Lett. 5, 449 (2008).

    Article  ADS  Google Scholar 

  2. M. E. Fermann and I. Haitl, Laser Phys. Lett. 6, 11 (2009).

    Article  ADS  Google Scholar 

  3. S. M. Kobtsev and S. V. Kukarin, Laser Phys. 20, 372 (2010).

    Article  ADS  Google Scholar 

  4. S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, Laser Phys. 20, 375 (2010).

    Article  ADS  Google Scholar 

  5. A. Efimov, Laser Phys. 18, 667 (2008).

    Article  ADS  Google Scholar 

  6. S. M. Kobtsev and S. V. Smirnov, User Phys. 17, 1303 (2007).

    ADS  Google Scholar 

  7. D. A. Sidorov-Biryukov, K. A. Kudinov, A. A. Podshivalov, and A. M. Zheltikov, Laser Phys. Lett. 7, 355 (2010).

    Article  ADS  Google Scholar 

  8. N. I. Zhavoronkov, Laser Phys. Lett. 6, 806 (2009).

    Article  ADS  Google Scholar 

  9. B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44 (2009).

    Article  ADS  Google Scholar 

  10. A. V. Andrianov, S. V. Muraviev, A. V. Kim, and A. A. Sysoliatin, Laser Phys. 19, 2014 (2009).

    Article  ADS  Google Scholar 

  11. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed (Academic, San Diego, CA, 2007).

    Google Scholar 

  12. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, Opt. Express 10, 1083 (2002).

    ADS  Google Scholar 

  13. E. A. Kuzin, O. Pottiez, M. Bello-Jimenez, B. Ibarra-Escamilla, A. Flores-Rosas, and M. Duran-Sanchez, Laser Phys. 19, 876 (2009).

    Article  ADS  Google Scholar 

  14. R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, Laser Phys. Lett. 7, 666 (2010).

    Article  ADS  Google Scholar 

  15. R. Buczynski, D. Pysz, T. Martynkien, D. Lorenc, I. Kujawa, T. Nasilowski, F. Berghmans, H. Thienpont, and R. Stepien, Laser Phys. Lett. 6, 575 (2009).

    Article  ADS  Google Scholar 

  16. J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, Laser Phys. Lett. 4, 413 (2007).

    Article  ADS  Google Scholar 

  17. S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, Laser Phys. 18, 1257 (2008).

    Article  ADS  Google Scholar 

  18. Y. Gu, L. Zhan, D.-D. Deng, Y.-X. Wang, and Y.-X. Xia, Laser Phys. 20, 1459 (2010).

    Article  ADS  Google Scholar 

  19. R. K. Sinha and S. K. Varshney, Microwave Opt. Technol. Lett. 37, 129 (2003).

    Article  Google Scholar 

  20. S. W. Harun, M. R. Shirazi, and H. Ahmad, Laser Phys. Lett. 4, 678 (2007).

    Article  ADS  Google Scholar 

  21. R. Parvizi, H. Arof, N. M. Ali, H. Ahmad, and S. W. Harun, Opt. Laser Technol. 43, 866 (2011).

    Article  ADS  Google Scholar 

  22. T. W. Hänsen, R. Holzwarth, J. Reichert, and T. Udem, in Proceedings of Quantum Electronics and Laser Science Conference (Opt. Soc. of Amer., Washington, DC, 2000), p. 109.

    Google Scholar 

  23. I. Bugar, I. V. Fedotov, A. B. Fedotov, M. Koys, R. Buczynski, D. Pysz, J. Chlpik, F. Uherek, and A. M. Zheltikov, Laser Phys. 18, 1420 (2008).

    Article  ADS  Google Scholar 

  24. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).

    Article  ADS  Google Scholar 

  25. B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km Large Effective Area and Low-Loss (1.7 dB/km) Photonic Crystal Fibre,” Electron. Lett. 39, 796 (2003).

    Article  Google Scholar 

  26. K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, “Low Water Peak Photonic Crystal Fibres,” in Proceedings of the ECOC′03, post-deadline paper Th4.1.6.

  27. P. Russell, Science 299, 358 (2003).

    Article  ADS  Google Scholar 

  28. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nature Photon. 1, 115 (2007).

    Article  ADS  Google Scholar 

  29. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, Nature 434, 488 (2005).

    Article  ADS  Google Scholar 

  30. S. W. Harun, R. Akbari, H. Arof, and H. Ahmad, Laser Phys. Lett. (2011, in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Harun.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harun, S.W., Akbari, R., Arof, H. et al. Supercontinuum generation in photonic crystal fiber using femtosecond pulses. Laser Phys. 21, 1215–1218 (2011). https://doi.org/10.1134/S1054660X11130135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11130135

Keywords

Navigation